

 Navigation

 	
 index

 	
 next |

 	Python libuv CFFI Bindings 0.0.4.dev0 documentation

Python libuv CFFI Bindings’s documentation!

Contents:

	Errors – exceptions and error handling

	Handle – handle base class

	Async – async handle

	Check – check handle

	Idle – idle handle

	Poll – poll handle

	Prepare – poll handle

	Signal – signal handle

	Timer – timer handle

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Maximilian Köhl.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python libuv CFFI Bindings 0.0.4.dev0 documentation

Errors – exceptions and error handling

	
class uv.StatusCode[source]

	
	
SUCCESS = None

	Success.

	
class uv.UVError(code, message=None)[source]

	

	
class uv.HandleClosedError[source]

	

	
class uv.LoopClosedError[source]

	

 Copyright 2015, Maximilian Köhl.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python libuv CFFI Bindings 0.0.4.dev0 documentation

Handle – handle base class

	
class uv.Handle(uv_handle, loop=None)[source]

	Handles represent long-lived objects capable of performing certain
operations while active. This is the base class of all handles except
the file and SSL handle, which are pure Python.

	Raises:	uv.LoopClosedError – loop has already been closed

	Parameters:	
	loop (Loop) – loop where the handle should run on

	uv_handle (ffi.CData) – allocated c struct for this handle

	
loop

	Loop where the handle is running on.

	Readonly:	True

	Type:	Loop

	
on_closed

	Callback which should be called after the handle has been closed.

	Readonly:	False

	Type:	(Handle) -> None

	
closed

	Handle has been closed. This is True right after the close callback
has been called. It means all internal resources are freed and this
handle is ready to be garbage collected.

	Readonly:	True

	Type:	bool

	
closing

	Handle is already closed or is closing. This is True right after
close has been called. Operations on a closed or closing handle will
raise uv.HandleClosedError.

	Readonly:	True

	Type:	bool

	
active

	Handle is active or not. What “active” means depends on the handle:

	uv.Async: is always active and cannot be deactivated

	uv.Pipe, uv.TCP, uv.UDP, ...: basically
any handle dealing with IO is active when it is doing something
involves IO like reading, writing, connecting or listening

	uv.Check, uv.Idle, uv.Timer, ...: handle
is active when it has been started and not yet stopped

	Readonly:	True

	Type:	bool

	
referenced

	Handle is referenced or not. If the event loop runs in default mode it
will exit when there are no more active and referenced handles left. This
has nothing to do with CPython’s reference counting.

	Readonly:	False

	Type:	bool

	
send_buffer_size

	Size of the send buffer that the operating system uses for the
socket. The following handles are supported: TCP and UDP handles
on Unix and Windows, Pipe handles only on Unix. On all unsupported
handles this will raise uv.UVError with StatusCode.EINVAL.

Note

Unlike libuv this library abstracts the different behaviours on Linux
and other operating systems. This means, the size set is divided by
two on Linux because Linux internally multiplies it by two.

	Raises:	
	uv.UVError – error while getting/setting the send buffer size

	uv.HandleClosedError – handle has already been closed or is closing

	Readonly:	False

	Type:	int

	
receive_buffer_size

	Size of the receive buffer that the operating system uses for the
socket. The following handles are supported: TCP and UDP handles
on Unix and Windows, Pipe handles only on Unix. On all unsupported
handles this will raise uv.UVError with StatusCode.EINVAL.

Note

Unlike libuv this library abstracts the different behaviours on Linux
and other operating systems. This means, the size set is divided by
two on Linux because Linux internally multiplies it by two.

	Raises:	
	uv.UVError – error while getting/setting the receive buffer size

	uv.HandleClosedError – handle has already been closed or is closing

	Readonly:	False

	Type:	int

	
fileno()[source]

	Gets the platform dependent file descriptor equivalent. The following
handles are supported: TCP, UDP, TTY, Pipes and Poll. On all other
handles this will raise uv.UVError with StatusCode.EINVAL.

If a handle does not have an attached file descriptor yet this method
will raise uv.UVError with StatusCode.EBADF.

Warning

Be very careful when using this method. Libuv assumes it
is in control of the file descriptor so any change to it
may result in unpredictable malfunctions.

	Raises:	
	uv.UVError – error while receiving fileno

	uv.HandleClosedError – handle has already been closed or is closing

	Returns:	platform dependent file descriptor equivalent

	Return type:	int [https://docs.python.org/3.5/library/functions.html#int]

	
reference()[source]

	References the handle. If the event loop runs in default mode it will
exit when there are no more active and referenced handles left. This
has nothing to do with CPython’s reference counting. References are
idempotent, that is, if a handle is already referenced calling this
method again will have not effect.

	Raises:	uv.HandleClosedError – handle has already been closed or is closing

	
dereference()[source]

	Dereferences the handle. If the event loop runs in default mode it
will exit when there are no more active and referenced handles left.
This has nothing to do with CPython’s reference counting. References
are idempotent, that is, if a handle is not referenced calling this
method again will have not effect.

	Raises:	uv.HandleClosedError – handle has already been closed or is closing

	
close(on_closed=None)[source]

	Closes the handle and frees all resources afterwards. Please make sure
to call this method on any handle you do not need anymore. Handles do
not close automatically and are also not garbage collected unless you
have closed them exlicitly (explicit is better than implicit). This
method is idempotent, that is, if the handle is already closed or is
closing calling this method will have no effect.

In-progress requests, like uv.ConnectRequest or
uv.WriteRequest, are cancelled and have their callbacks
called asynchronously with StatusCode.ECANCELED

After this method has been called on a handle no other operations can be
performed on it, they will raise uv.HandleClosedError.

	Parameters:	on_closed ((Handle) -> None) – callback called after the handle has been closed

	
destroy()[source]

	
Warning

This method is used internally to free all allocated C resources and
make sure there are no references from Python anymore to those objects
after the handle has been closed. You should never call it directly!

 Copyright 2015, Maximilian Köhl.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python libuv CFFI Bindings 0.0.4.dev0 documentation

Async – async handle

	
class uv.Async(loop=None, callback=None)[source]

	Async handles will wake-up the event loop from an other thread and
run the given callback within the event loop’s thread. They are the
only thread-safe handles.

	Raises:	uv.UVError – error during the initialization of the handle

	Parameters:	
	loop (uv.Loop) – event loop which should be used for the handle

	callback ((uv.Async) -> None) – callback which should be called from within the event loop

	
callback

	Callback which should be called from within the event loop.

	
callback(Async-Handle)

	

	Readonly:	False

	Type:	(uv.Async) -> None

	
send(callback=None)[source]

	Wake-up the event loop and execute the callback afterwards. Multiple calls
to this method are coalesced if they happen before the callback has been
called. This means not every call will yield a execution of the callback.

	Raises:	
	uv.UVError – error while trying to wake-up event loop

	uv.HandleClosedError – handle has already been closed or is closing

	Parameters:	callback ((uv.Async) -> None) – callback which should be called from within the event loop

 Copyright 2015, Maximilian Köhl.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python libuv CFFI Bindings 0.0.4.dev0 documentation

Check – check handle

	
class uv.Check(loop=None, callback=None)[source]

	Check handles will run the given callback once per loop iteration,
right after polling for IO.

	Raises:	uv.UVError – error during the initialization of the handle

	Parameters:	
	loop (Loop) – event loop which should be used for the handle

	callback ((uv.Check) -> None) – callback which should be called right after polling for IO

	
callback

	Callback which should be called after polling for IO.

	
callback(Check-Handle)

	

	Readonly:	False

	Type:	(uv.Check) -> None

	
start(callback=None)[source]

	Starts the handle.

	Raises:	
	uv.UVError – error while starting the handle

	uv.HandleClosedError – handle has already been closed or is closing

	Parameters:	callback ((uv.Check) -> None) – callback which should be called after polling for IO

	
stop()[source]

	Stops the handle, the callback will no longer be called.

	Raises:	uv.UVError – error while stopping the handle

 Copyright 2015, Maximilian Köhl.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python libuv CFFI Bindings 0.0.4.dev0 documentation

Idle – idle handle

	
class uv.Idle(loop=None, callback=None)[source]

	Idle handles will run the given callback once per loop
iteration, right before the uv.Prepare handles.

The notable difference with prepare handles is, that when
there are active idle handles, the loop will perform a zero
timeout poll instead of blocking for IO.

	Raises:	uv.UVError – error during the initialization of the handle

	Parameters:	
	loop (uv.Loop) – event loop which should be used for the handle

	callback ((uv.Idle) -> None) – callback which should be called before prepare handles

	
callback

	Callback which should be called before prepare handles.

	
callback(Idle-Handle)

	

	Readonly:	False

	Type:	(uv.Idle) -> None

	
start(callback=None)[source]

	Starts the handle.

	Raises:	
	uv.UVError – error while starting the handle

	uv.HandleClosedError – handle has already been closed or is closing

	Parameters:	callback ((uv.Idle) -> None) – callback which should be called before prepare handles

	
stop()[source]

	Stops the handle, the callback will no longer be called.

	Raises:	uv.UVError – error while stopping the handle

 Copyright 2015, Maximilian Köhl.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python libuv CFFI Bindings 0.0.4.dev0 documentation

Poll – poll handle

	
class uv.Poll(fd, loop=None, callback=None)[source]

	Poll handles are used to watch file descriptors for readability and
writability. The purpose of poll handles is to enable integrating
external libraries that rely on the event loop to signal them about
the socket status changes. Using them for any other purpose is not
recommended. Use uv.TCP, uv.UDP, etc. instead,
which provide faster an more scalable implementations, that what
can be archived with uv.Poll, especially on Windows.

It is possible that poll handles occasionally signal that a file
descriptor is readable or writable even when it is not. The user
should therefore always be prepared to handle EAGAIN or equivalent
when it attempts to read from or write to the fd.

It is not okay to have multiple active poll handles for the same
socket, this can cause libuv to busyloop or otherwise malfunction.

Do not close a file descriptor while it is being polled by an active
poll handle. This can cause the handle to report an error, but it
might also start polling another socket. However the fd can be
safely closed immediately after uv.Poll.stop() or
uv.Handle.close() has been called.

Note

On Windows only sockets can be polled with uv.Poll
handles. On Unix any file descriptor that would be accepted
by poll(2) can be used.

	Raises:	uv.UVError – error during the initialization of the handle

	Parameters:	
	fd (int [https://docs.python.org/3.5/library/functions.html#int]) – file descriptor which should be polled (is set to non-blocking mode)

	loop (Loop) – event loop which should be used for the handle

	callback ((uv.Poll, uv.StatusCode, int) -> None) – callback which should be called on IO events

	
fd

	File descriptor the handle polls on.

	Readonly:	True

	Type:	int

	
callback

	Callback which should be called on IO events.

	
callback(Poll-Handle, Status-Code, Event-Mask)

	

	Readonly:	False

	Type:	(uv.Poll, uv.StatusCode, int) -> None

	
start(events=<PollEvent.READABLE: 1>, callback=None)[source]

	Starts polling the file descriptor for the given events. As soon as
an event is detected the callback will be called with status code
uv.StatusCode.SUCCESS and the detected events.

If an error happens while polling the callback gets called with status
code < 0 which corresponds to a uv.StatusCode.

Calling this on a handle that is already active is fine. Doing so will
update the events mask that is being watched for.

	Raises:	
	uv.UVError – error while starting the handle

	uv.HandleClosedError – handle has already been closed or is closing

	Parameters:	
	events (int [https://docs.python.org/3.5/library/functions.html#int]) – bitmask of events which should be polled for

	callback ((uv.Poll, uv.StatusCode, int) -> None) – callback which should be called on IO events

	
stop()[source]

	Stops the handle, the callback will no longer be called.

	Raises:	uv.UVError – error while stopping the handle

	
class uv.PollEvent[source]

	Poll event types enumeration.

	
READABLE = None

	File descriptor is readable.

	Type:	int

	
WRITABLE = None

	File descriptor is writable.

	Type:	int

 Copyright 2015, Maximilian Köhl.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python libuv CFFI Bindings 0.0.4.dev0 documentation

Prepare – poll handle

	
class uv.Prepare(loop=None, callback=None)[source]

	Prepare handles will run the given callback once per loop iteration,
right before polling for IO.

	Raises:	uv.UVError – error during the initialization of the handle

	Parameters:	
	loop (Loop) – event loop which should be used for the handle

	callback ((uv.Prepare) -> None) – callback which should be called right before polling for IO

	
callback

	Callback which should be called before polling for IO.

	
callback(Prepare-Handle)

	

	Readonly:	False

	Type:	(uv.Prepare) -> None

	
start(callback=None)[source]

	Starts the handle.

	Raises:	
	uv.UVError – error while starting the handle

	uv.HandleClosedError – handle has already been closed or is closing

	Parameters:	callback ((uv.Prepare) -> None) – callback which should be called before polling for IO

	
stop()[source]

	Stops the handle, the callback will no longer be called.

	Raises:	uv.UVError – error while stopping the handle

 Copyright 2015, Maximilian Köhl.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python libuv CFFI Bindings 0.0.4.dev0 documentation

Signal – signal handle

	
class uv.Signal(loop=None, callback=None)[source]

	Signal handles implement Unix style signal handling on a per-event
loop bases. Reception of the generic uv.Signals is emulated
on Windows. Watchers for other signals can be successfully created,
but these signals are never received.

Note

On Linux SIGRT0 and SIGRT1 (signals 32 and 33) are used by the
NPTL pthreads library to manage threads. Installing watchers for
those signals will lead to unpredictable behavior and is strongly
discouraged. Future versions of libuv may simply reject them.

	Raises:	uv.UVError – error during the initialization of the handle

	Parameters:	
	loop (Loop) – event loop which should be used for the handle

	callback ((uv.Signal, int) -> None) – callback which should be called on signal delivery

	
callback

	Callback which should be called on signal delivery.

	
callback(Signal-Handle, Signal-Number)

	

	Readonly:	False

	Type:	(uv.Signal, int) -> None

	
signum

	Signal being monitored by this handle.

	Raises:	uv.HandleClosedError – handle has already been closed or is closing

	Readonly:	True

	Return type:	int [https://docs.python.org/3.5/library/functions.html#int]

	
start(signum, callback=None)[source]

	Starts the handle.

	Raises:	
	uv.UVError – error while starting the handle

	uv.HandleClosedError – handle has already been closed or is closing

	Parameters:	
	signum (int [https://docs.python.org/3.5/library/functions.html#int]) – signal number which should be monitored

	callback ((uv.Signal) -> None) – callback which should be called on signal delivery

	
stop()[source]

	Stops the handle, the callback will no longer be called.

	Raises:	uv.UVError – error while stopping the handle

	
class uv.Signals[source]

	Generic signals enumeration.

	
SIGINT = None

	Is normally delivered when the user presses CTRL+C. However it is
not generated when terminal is in raw mode.

	Type:	int

	
SIGBREAK = None

	Is delivered when the user presses CTRL+BREAK.

	Type:	int

	
SIGHUP = None

	Is generated when the user closes the console window. After that the
OS might terminate the program after a few seconds.

	Type:	int

	
SIGWINCH = None

	Is generated when the console window has been resized. On Windows libuv
emulates SIGWINCH when the program uses a uv.TTY handle to
write to the console. It may not always be delivered in a timely manner,
because libuv will only detect changes when the cursor is being moved.
When a readable uv.TTY handle is used in raw mode, resizing
the console buffer will also trigger SIGWINCH.

	Type:	int

 Copyright 2015, Maximilian Köhl.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Python libuv CFFI Bindings 0.0.4.dev0 documentation

Timer – timer handle

	
class uv.Timer(loop=None, callback=None)[source]

	Timer handles are used to schedule callbacks to be called in the future.

	Raises:	uv.UVError – error during the initialization of the handle

	Parameters:	
	loop (Loop) – event loop which should be used for the handle

	callback ((uv.Timer) -> None) – callback which should be called on timeout

	
callback

	Callback which should be called on timeout.

	
callback(Timer-Handle)

	

	Readonly:	False

	Type:	(uv.Timer) -> None

	
repeat

	The repeat interval value in milliseconds. The timer will be
scheduled to run on the given interval, regardless of the
callback execution duration, and will follow normal timer
semantics in the case of time-slice overrun.

For example, if a 50ms repeating timer first runs for 17ms,
it will be scheduled to run again 33ms later. If other tasks
consume more than the 33ms following the first timer callback,
then the callback will run as soon as possible.

Note

If the repeat value is set from a timer callback it
does not immediately take effect. If the timer was
non-repeating before, it will have been stopped. If it
was repeating, then the old repeat value will have been
used to schedule the next timeout.

	Raises:	uv.HandleClosedError – handle has already been closed or is closing

	Readonly:	False

	Return type:	int [https://docs.python.org/3.5/library/functions.html#int]

	
again()[source]

	Stop the timer, and if it is repeating restart it using the repeat
value as the timeout. If the timer has never been started before it
raises uv.UVError with uv.StatusCode.EINVAL.

	Raises:	
	uv.UVError – error while restarting the timer

	uv.HandleClosedError – handle has already been closed or is closing

	
start(timeout, callback=None, repeat=0)[source]

	Starts the timer. If timeout is zero, the callback fires
on the next event loop iteration. If repeat is non-zero, the
callback fires first after timeout milliseconds and then
repeatedly after repeat milliseconds.

	Raises:	
	uv.UVError – error while starting the handle

	uv.HandleClosedError – handle has already been closed or is closing

	Parameters:	
	timeout (int [https://docs.python.org/3.5/library/functions.html#int]) – timeout which should be used (in milliseconds)

	callback ((uv.Timer) -> None) – callback which should be called on timeout

	repeat (int [https://docs.python.org/3.5/library/functions.html#int]) – repeat interval which should be set (in milliseconds)

	
stop()[source]

	Stops the handle, the callback will no longer be called.

	Raises:	uv.UVError – error while stopping the handle

 Copyright 2015, Maximilian Köhl.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Python libuv CFFI Bindings 0.0.4.dev0 documentation

Index

 A
 | C
 | D
 | F
 | H
 | I
 | L
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	

 	active (uv.Handle attribute)

 	again() (uv.Timer method)

 	

 	Async (class in uv)

 	Async.callback() (in module uv)

C

 	

 	callback (uv.Async attribute)

 	

 	(uv.Check attribute)

 	(uv.Idle attribute)

 	(uv.Poll attribute)

 	(uv.Prepare attribute)

 	(uv.Signal attribute)

 	(uv.Timer attribute)

 	Check (class in uv)

 	Check.callback() (in module uv)

 	

 	close() (uv.Handle method)

 	closed (uv.Handle attribute)

 	closing (uv.Handle attribute)

D

 	

 	dereference() (uv.Handle method)

 	

 	destroy() (uv.Handle method)

F

 	

 	fd (uv.Poll attribute)

 	

 	fileno() (uv.Handle method)

H

 	

 	Handle (class in uv)

 	

 	HandleClosedError (class in uv)

I

 	

 	Idle (class in uv)

 	

 	Idle.callback() (in module uv)

L

 	

 	loop (uv.Handle attribute)

 	

 	LoopClosedError (class in uv)

O

 	

 	on_closed (uv.Handle attribute)

P

 	

 	Poll (class in uv)

 	Poll.callback() (in module uv)

 	PollEvent (class in uv)

 	

 	Prepare (class in uv)

 	Prepare.callback() (in module uv)

R

 	

 	READABLE (uv.PollEvent attribute)

 	receive_buffer_size (uv.Handle attribute)

 	reference() (uv.Handle method)

 	

 	referenced (uv.Handle attribute)

 	repeat (uv.Timer attribute)

S

 	

 	send() (uv.Async method)

 	send_buffer_size (uv.Handle attribute)

 	SIGBREAK (uv.Signals attribute)

 	SIGHUP (uv.Signals attribute)

 	SIGINT (uv.Signals attribute)

 	Signal (class in uv)

 	Signal.callback() (in module uv)

 	

 	Signals (class in uv)

 	signum (uv.Signal attribute)

 	SIGWINCH (uv.Signals attribute)

 	start() (uv.Check method)

 	

 	(uv.Idle method)

 	(uv.Poll method)

 	(uv.Prepare method)

 	(uv.Signal method)

 	(uv.Timer method)

 	StatusCode (class in uv)

 	stop() (uv.Check method)

 	

 	(uv.Idle method)

 	(uv.Poll method)

 	(uv.Prepare method)

 	(uv.Signal method)

 	(uv.Timer method)

 	SUCCESS (uv.StatusCode attribute)

T

 	

 	Timer (class in uv)

 	

 	Timer.callback() (in module uv)

U

 	

 	UVError (class in uv)

W

 	

 	WRITABLE (uv.PollEvent attribute)

 Copyright 2015, Maximilian Köhl.
 Created using Sphinx 1.3.5.

 _modules/uv/async.html

 Navigation

 		
 index

 		Python libuv CFFI Bindings 0.0.4.dev0 documentation »

 		Module code »

 Source code for uv.async

-*- coding: utf-8 -*-
#
Copyright (C) 2015, Maximilian Köhl <mail@koehlma.de>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

from __future__ import print_function, unicode_literals, division

from .library import ffi, lib, detach, dummy_callback

from .error import UVError, HandleClosedError
from .handle import HandleType, Handle

__all__ = ['Async']

@ffi.callback('uv_async_cb')
def uv_async_cb(uv_async):
 async = detach(uv_async)
 with async.loop.callback_context:
 async.callback(async)

@HandleType.ASYNC
[docs]class Async(Handle):
 """
 Async handles will wake-up the event loop from an other thread and
 run the given callback within the event loop's thread. They are the
 only thread-safe handles.

 :raises uv.UVError: error during the initialization of the handle

 :param loop: event loop which should be used for the handle
 :param callback: callback which should be called from within the event loop

 :type loop: uv.Loop
 :type callback: (uv.Async) -> None
 """

 __slots__ = ['uv_async', 'callback']

 def __init__(self, loop=None, callback=None):
 self.uv_async = ffi.new('uv_async_t*')
 super(Async, self).__init__(self.uv_async, loop)
 self.callback = callback or dummy_callback
 """
 Callback which should be called from within the event loop.

 .. function:: callback(Async-Handle)

 :readonly: False
 :type: (uv.Async) -> None
 """
 code = lib.uv_async_init(self.loop.uv_loop, self.uv_async, uv_async_cb)
 if code < 0:
 self.destroy()
 raise UVError(code)

[docs] def send(self, callback=None):
 """
 Wake-up the event loop and execute the callback afterwards. Multiple calls
 to this method are coalesced if they happen before the callback has been
 called. This means not every call will yield a execution of the callback.

 :raises uv.UVError: error while trying to wake-up event loop
 :raises uv.HandleClosedError: handle has already been closed or is closing

 :param callback: callback which should be called from within the event loop
 :type callback: (uv.Async) -> None
 """
 if self.closing: raise HandleClosedError()
 self.callback = callback or self.callback
 code = lib.uv_async_send(self.uv_async)
 if code < 0: raise UVError(code)

 def destroy(self):
 self.uv_async = None
 super(Async, self).destroy()

 __call__ = send

 © Copyright 2015, Maximilian Köhl.
 Created using Sphinx 1.3.5.

_modules/uv/check.html

 Navigation

 		
 index

 		Python libuv CFFI Bindings 0.0.4.dev0 documentation »

 		Module code »

 Source code for uv.check

-*- coding: utf-8 -*-
#
Copyright (C) 2015, Maximilian Köhl <mail@koehlma.de>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

from __future__ import print_function, unicode_literals, division

from .library import ffi, lib, detach, dummy_callback

from .error import UVError, HandleClosedError
from .handle import HandleType, Handle

__all__ = ['Check']

@ffi.callback('uv_check_cb')
def uv_check_cb(uv_check):
 check = detach(uv_check)
 with check.loop.callback_context:
 check.callback(check)

@HandleType.CHECK
[docs]class Check(Handle):
 """
 Check handles will run the given callback once per loop iteration,
 right after polling for IO.

 :raises uv.UVError: error during the initialization of the handle

 :param loop: event loop which should be used for the handle
 :param callback: callback which should be called right after polling for IO

 :type loop: Loop
 :type callback: (uv.Check) -> None
 """

 __slots__ = ['uv_check', 'callback']

 def __init__(self, loop=None, callback=None):
 self.uv_check = ffi.new('uv_check_t*')
 super(Check, self).__init__(self.uv_check, loop)
 self.callback = callback or dummy_callback
 """
 Callback which should be called after polling for IO.

 .. function:: callback(Check-Handle)

 :readonly: False
 :type: (uv.Check) -> None
 """
 code = lib.uv_check_init(self.loop.uv_loop, self.uv_check)
 if code < 0:
 self.destroy()
 raise UVError(code)

[docs] def start(self, callback=None):
 """
 Starts the handle.

 :raises uv.UVError: error while starting the handle
 :raises uv.HandleClosedError: handle has already been closed or is closing

 :param callback: callback which should be called after polling for IO
 :type callback: (uv.Check) -> None
 """
 if self.closing: raise HandleClosedError()
 self.callback = callback or self.callback
 code = lib.uv_check_start(self.uv_check, uv_check_cb)
 if code < 0: raise UVError(code)

[docs] def stop(self):
 """
 Stops the handle, the callback will no longer be called.

 :raises uv.UVError: error while stopping the handle
 """
 if self.closing: return
 code = lib.uv_check_stop(self.uv_check)
 if code < 0: raise UVError(code)

 def destroy(self):
 self.uv_check = None
 super(Check, self).destroy()

 __call__ = start

 © Copyright 2015, Maximilian Köhl.
 Created using Sphinx 1.3.5.

_static/minus.png

_modules/uv/prepare.html

 Navigation

 		
 index

 		Python libuv CFFI Bindings 0.0.4.dev0 documentation »

 		Module code »

 Source code for uv.prepare

-*- coding: utf-8 -*-
#
Copyright (C) 2015, Maximilian Köhl <mail@koehlma.de>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

from __future__ import print_function, unicode_literals, division

from .library import ffi, lib, detach, dummy_callback

from .error import UVError, HandleClosedError
from .handle import HandleType, Handle

__all__ = ['Prepare']

@ffi.callback('uv_prepare_cb')
def uv_prepare_cb(uv_prepare):
 prepare = detach(uv_prepare)
 with prepare.loop.callback_context:
 prepare.callback(prepare)

@HandleType.PREPARE
[docs]class Prepare(Handle):
 """
 Prepare handles will run the given callback once per loop iteration,
 right before polling for IO.

 :raises uv.UVError: error during the initialization of the handle

 :param loop: event loop which should be used for the handle
 :param callback: callback which should be called right before polling for IO

 :type loop: Loop
 :type callback: (uv.Prepare) -> None
 """
 __slots__ = ['uv_prepare', 'callback']

 def __init__(self, loop=None, callback=None):
 self.uv_prepare = ffi.new('uv_prepare_t*')
 super(Prepare, self).__init__(self.uv_prepare, loop)
 self.callback = callback or dummy_callback
 """
 Callback which should be called before polling for IO.

 .. function:: callback(Prepare-Handle)

 :readonly: False
 :type: (uv.Prepare) -> None
 """
 code = lib.uv_prepare_init(self.loop.uv_loop, self.uv_prepare)
 if code < 0:
 self.destroy()
 raise UVError(code)

[docs] def start(self, callback=None):
 """
 Starts the handle.

 :raises uv.UVError: error while starting the handle
 :raises uv.HandleClosedError: handle has already been closed or is closing

 :param callback: callback which should be called before polling for IO
 :type callback: (uv.Prepare) -> None
 """
 if self.closing: raise HandleClosedError()
 self.callback = callback or self.callback
 code = lib.uv_prepare_start(self.uv_prepare, uv_prepare_cb)
 if code < 0: raise UVError(code)

[docs] def stop(self):
 """
 Stops the handle, the callback will no longer be called.

 :raises uv.UVError: error while stopping the handle
 """
 if self.closing: return
 code = lib.uv_prepare_stop(self.uv_prepare)
 if code < 0: raise UVError(code)

 def destroy(self):
 self.uv_prepare = None
 super(Prepare, self).destroy()

 __call__ = start

 © Copyright 2015, Maximilian Köhl.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_modules/uv/error.html

 Navigation

 		
 index

 		Python libuv CFFI Bindings 0.0.4.dev0 documentation »

 		Module code »

 Source code for uv.error

-*- coding: utf-8 -*-
#
Copyright (C) 2015, Maximilian Köhl <mail@koehlma.de>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

from __future__ import print_function, unicode_literals, division

import enum

from .library import ffi, lib

__all__ = ['StatusCode', 'UVError', 'HandleClosedError']

[docs]class StatusCode(enum.IntEnum):
 SUCCESS = 0
 """
 Success.
 """

 E2BIG = lib.UV_E2BIG
 EACCES = lib.UV_EACCES
 EADDRINUSE = lib.UV_EADDRINUSE
 EADDRNOTAVAIL = lib.UV_EADDRNOTAVAIL
 EAFNOSUPPORT = lib.UV_EAFNOSUPPORT
 EAGAIN = lib.UV_EAGAIN
 EAI_ADDRFAMILY = lib.UV_EAI_ADDRFAMILY
 EAI_AGAIN = lib.UV_EAI_AGAIN
 EAI_BADFLAGS = lib.UV_EAI_BADFLAGS
 EAI_BADHINTS = lib.UV_EAI_BADHINTS
 EAI_CANCELED = lib.UV_EAI_CANCELED
 EAI_FAIL = lib.UV_EAI_FAIL
 EAI_FAMILY = lib.UV_EAI_FAMILY
 EAI_MEMORY = lib.UV_EAI_MEMORY
 EAI_NODATA = lib.UV_EAI_NODATA
 EAI_NONAME = lib.UV_EAI_NONAME
 EAI_OVERFLOW = lib.UV_EAI_OVERFLOW
 EAI_PROTOCOL = lib.UV_EAI_PROTOCOL
 EAI_SERVICE = lib.UV_EAI_SERVICE
 EAI_SOCKTYPE = lib.UV_EAI_SOCKTYPE
 EALREADY = lib.UV_EALREADY
 EBADF = lib.UV_EBADF
 EBUSY = lib.UV_EBUSY
 ECANCELED = lib.UV_ECANCELED
 ECHARSET = lib.UV_ECHARSET
 ECONNABORTED = lib.UV_ECONNABORTED
 ECONNREFUSED = lib.UV_ECONNREFUSED
 ECONNRESET = lib.UV_ECONNRESET
 EDESTADDRREQ = lib.UV_EDESTADDRREQ
 EEXIST = lib.UV_EEXIST
 EFAULT = lib.UV_EFAULT
 EFBIG = lib.UV_EFBIG
 EHOSTUNREACH = lib.UV_EHOSTUNREACH
 EINTR = lib.UV_EINTR
 EINVAL = lib.UV_EINVAL
 EIO = lib.UV_EIO
 EISCONN = lib.UV_EISCONN
 EISDIR = lib.UV_EISDIR
 ELOOP = lib.UV_ELOOP
 EMFILE = lib.UV_EMFILE
 EMSGSIZE = lib.UV_EMSGSIZE
 ENAMETOOLONG = lib.UV_ENAMETOOLONG
 ENETDOWN = lib.UV_ENETDOWN
 ENETUNREACH = lib.UV_ENETUNREACH
 ENFILE = lib.UV_ENFILE
 ENOBUFS = lib.UV_ENOBUFS
 ENODEV = lib.UV_ENODEV
 ENOENT = lib.UV_ENOENT
 ENOMEM = lib.UV_ENOMEM
 ENONET = lib.UV_ENONET
 ENOPROTOOPT = lib.UV_ENOPROTOOPT
 ENOSPC = lib.UV_ENOSPC
 ENOSYS = lib.UV_ENOSYS
 ENOTCONN = lib.UV_ENOTCONN
 ENOTDIR = lib.UV_ENOTDIR
 ENOTEMPTY = lib.UV_ENOTEMPTY
 ENOTSOCK = lib.UV_ENOTSOCK
 ENOTSUP = lib.UV_ENOTSUP
 EPERM = lib.UV_EPERM
 EPIPE = lib.UV_EPIPE
 EPROTO = lib.UV_EPROTO
 EPROTONOSUPPORT = lib.UV_EPROTONOSUPPORT
 EPROTOTYPE = lib.UV_EPROTOTYPE
 ERANGE = lib.UV_ERANGE
 EROFS = lib.UV_EROFS
 ESHUTDOWN = lib.UV_ESHUTDOWN
 ESPIPE = lib.UV_ESPIPE
 ESRCH = lib.UV_ESRCH
 ETIMEDOUT = lib.UV_ETIMEDOUT
 ETXTBSY = lib.UV_ETXTBSY
 EXDEV = lib.UV_EXDEV
 UNKNOWN = lib.UV_UNKNOWN
 EOF = lib.UV_EOF
 ENXIO = lib.UV_ENXIO
 EMLINK = lib.UV_EMLINK
 EHOSTDOWN = lib.UV_EHOSTDOWN

def get_status_code(code):
 if not code: return StatusCode.SUCCESS
 try: return StatusCode(code)
 except ValueError: return code

[docs]class UVError(OSError):
 def __init__(self, code, message=None):
 try:
 self.code = StatusCode(code)
 self.name = ffi.string(lib.uv_err_name(code)).decode()
 message = message or ffi.string(lib.uv_strerror(code)).decode()
 except ValueError:
 self.code = code
 self.name = 'UNKNOWN'
 message = 'some unknown error occoured'
 super(UVError, self).__init__(code, '[%s] %s' % (self.name, message))

class ClosedError(UVError):
 def __init__(self):
 message = 'invalid operation on closed structure'
 super(ClosedError, self).__init__(StatusCode.EINVAL, message)

[docs]class HandleClosedError(ClosedError): pass

[docs]class LoopClosedError(ClosedError): pass

 © Copyright 2015, Maximilian Köhl.
 Created using Sphinx 1.3.5.

_modules/uv/poll.html

 Navigation

 		
 index

 		Python libuv CFFI Bindings 0.0.4.dev0 documentation »

 		Module code »

 Source code for uv.poll

-*- coding: utf-8 -*-
#
Copyright (C) 2015, Maximilian Köhl <mail@koehlma.de>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

from __future__ import print_function, unicode_literals, division

import enum

from .library import ffi, lib, detach, dummy_callback

from .error import UVError, HandleClosedError
from .handle import HandleType, Handle

__all__ = ['Poll', 'PollEvent']

[docs]class PollEvent(enum.IntEnum):
 """
 Poll event types enumeration.
 """
 READABLE = lib.UV_READABLE
 """
 File descriptor is readable.

 :type: int
 """
 WRITABLE = lib.UV_WRITABLE
 """
 File descriptor is writable.

 :type: int
 """

@ffi.callback('uv_poll_cb')
def poll_callback(uv_poll, status, events):
 poll = detach(uv_poll)
 with poll.loop.callback_context:
 poll.callback(poll, status, events)

@HandleType.POLL
[docs]class Poll(Handle):
 """
 Poll handles are used to watch file descriptors for readability and
 writability. The purpose of poll handles is to enable integrating
 external libraries that rely on the event loop to signal them about
 the socket status changes. Using them for any other purpose is not
 recommended. Use :class:`uv.TCP`, :class:`uv.UDP`, etc. instead,
 which provide faster an more scalable implementations, that what
 can be archived with :class:`uv.Poll`, especially on Windows.

 It is possible that poll handles occasionally signal that a file
 descriptor is readable or writable even when it is not. The user
 should therefore always be prepared to handle `EAGAIN` or equivalent
 when it attempts to read from or write to the fd.

 It is not okay to have multiple active poll handles for the same
 socket, this can cause libuv to busyloop or otherwise malfunction.

 Do not close a file descriptor while it is being polled by an active
 poll handle. This can cause the handle to report an error, but it
 might also start polling another socket. However the fd can be
 safely closed immediately after :func:`uv.Poll.stop` or
 :func:`uv.Handle.close` has been called.

 .. note::

 On Windows only sockets can be polled with :class:`uv.Poll`
 handles. On Unix any file descriptor that would be accepted
 by :manpage:`poll(2)` can be used.

 :raises uv.UVError: error during the initialization of the handle

 :param fd: file descriptor which should be polled (is set to non-blocking mode)
 :param loop: event loop which should be used for the handle
 :param callback: callback which should be called on IO events

 :type fd: int
 :type loop: Loop
 :type callback: (uv.Poll, uv.StatusCode, int) -> None
 """
 __slots__ = ['uv_poll', 'fd', 'callback']

 def __init__(self, fd, loop=None, callback=None):
 self.uv_poll = ffi.new('uv_poll_t*')
 super(Poll, self).__init__(self.uv_poll, loop)
 self.fd = fd
 """
 File descriptor the handle polls on.

 :readonly: True
 :type: int
 """
 self.callback = callback or dummy_callback
 """
 Callback which should be called on IO events.

 .. function:: callback(Poll-Handle, Status-Code, Event-Mask)

 :readonly: False
 :type: (uv.Poll, uv.StatusCode, int) -> None
 """
 code = lib.cross_uv_poll_init_socket(self.loop.uv_loop, self.uv_poll, fd)
 if code < 0:
 self.destroy()
 raise UVError(code)

[docs] def start(self, events=PollEvent.READABLE, callback=None):
 """
 Starts polling the file descriptor for the given events. As soon as
 an event is detected the callback will be called with status code
 :class:`uv.StatusCode.SUCCESS` and the detected events.

 If an error happens while polling the callback gets called with status
 code < 0 which corresponds to a :class:`uv.StatusCode`.

 Calling this on a handle that is already active is fine. Doing so will
 update the events mask that is being watched for.

 :raises uv.UVError: error while starting the handle
 :raises uv.HandleClosedError: handle has already been closed or is closing

 :param events: bitmask of events which should be polled for
 :param callback: callback which should be called on IO events

 :type events: int
 :type callback: (uv.Poll, uv.StatusCode, int) -> None
 """
 if self.closing: raise HandleClosedError()
 self.callback = callback or self.callback
 code = lib.uv_poll_start(self.uv_poll, events, poll_callback)
 if code < 0: raise UVError(code)

[docs] def stop(self):
 """
 Stops the handle, the callback will no longer be called.

 :raises uv.UVError: error while stopping the handle
 """
 if self.closing: return
 code = lib.uv_poll_stop(self.uv_poll)
 if code < 0: raise UVError(code)

 def destroy(self):
 self.uv_poll = None
 super(Poll, self).destroy()

 __call__ = start

 © Copyright 2015, Maximilian Köhl.
 Created using Sphinx 1.3.5.

_modules/uv/timer.html

 Navigation

 		
 index

 		Python libuv CFFI Bindings 0.0.4.dev0 documentation »

 		Module code »

 Source code for uv.timer

-*- coding: utf-8 -*-
#
Copyright (C) 2015, Maximilian Köhl <mail@koehlma.de>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

from __future__ import print_function, unicode_literals, division

from .library import ffi, lib, detach, dummy_callback

from .error import UVError, HandleClosedError
from .handle import HandleType, Handle

__all__ = ['Timer']

@ffi.callback('uv_timer_cb')
def uv_timer_cb(uv_timer):
 timer = detach(uv_timer)
 with timer.loop.callback_context:
 timer.on_timeout(timer)

@HandleType.TIMER
[docs]class Timer(Handle):
 """
 Timer handles are used to schedule callbacks to be called in the future.

 :raises uv.UVError: error during the initialization of the handle

 :param loop: event loop which should be used for the handle
 :param callback: callback which should be called on timeout

 :type loop: Loop
 :type callback: (uv.Timer) -> None
 """

 __slots__ = ['uv_timer', 'callback']

 def __init__(self, loop=None, callback=None):
 self.uv_timer = ffi.new('uv_timer_t*')
 super(Timer, self).__init__(self.uv_timer, loop)
 self.callback = callback or dummy_callback
 """
 Callback which should be called on timeout.

 .. function:: callback(Timer-Handle)

 :readonly: False
 :type: (uv.Timer) -> None
 """
 code = lib.uv_timer_init(self.loop.uv_loop, self.uv_timer)
 if code < 0:
 self.destroy()
 raise UVError(code)

 @property
 def repeat(self):
 """
 The repeat interval value in milliseconds. The timer will be
 scheduled to run on the given interval, regardless of the
 callback execution duration, and will follow normal timer
 semantics in the case of time-slice overrun.

 For example, if a 50ms repeating timer first runs for 17ms,
 it will be scheduled to run again 33ms later. If other tasks
 consume more than the 33ms following the first timer callback,
 then the callback will run as soon as possible.

 .. note::

 If the repeat value is set from a timer callback it
 does not immediately take effect. If the timer was
 non-repeating before, it will have been stopped. If it
 was repeating, then the old repeat value will have been
 used to schedule the next timeout.

 :raises uv.HandleClosedError: handle has already been closed or is closing

 :readonly: False
 :rtype: int
 """
 if self.closing: raise HandleClosedError()
 return lib.uv_timer_get_repeat(self.uv_timer)

 @repeat.setter
 def repeat(self, repeat):
 """
 :raises uv.HandleClosedError: handle has already been closed or is closing

 :param repeat: repeat interval which should be set
 :type repeat: int
 """
 if self.closing: raise HandleClosedError()
 lib.uv_timer_set_repeat(self.uv_timer, repeat)

[docs] def again(self):
 """
 Stop the timer, and if it is repeating restart it using the repeat
 value as the timeout. If the timer has never been started before it
 raises :class:`uv.UVError` with :class:`uv.StatusCode.EINVAL`.

 :raises uv.UVError: error while restarting the timer
 :raises uv.HandleClosedError: handle has already been closed or is closing

 """
 if self.closing: raise HandleClosedError
 code = lib.uv_timer_again(self.uv_timer)
 if code < 0: raise UVError(code)

[docs] def start(self, timeout, callback=None, repeat=0):
 """
 Starts the timer. If `timeout` is zero, the callback fires
 on the next event loop iteration. If repeat is non-zero, the
 callback fires first after `timeout` milliseconds and then
 repeatedly after `repeat` milliseconds.

 :raises uv.UVError: error while starting the handle
 :raises uv.HandleClosedError: handle has already been closed or is closing

 :param timeout: timeout which should be used (in milliseconds)
 :param callback: callback which should be called on timeout
 :param repeat: repeat interval which should be set (in milliseconds)

 :type timeout: int
 :type callback: (uv.Timer) -> None
 :type repeat: int
 """
 if self.closing: raise HandleClosedError()
 self.callback = callback or self.callback
 code = lib.uv_timer_start(self.uv_timer, uv_timer_cb, timeout, repeat)
 if code < 0: raise UVError(code)

[docs] def stop(self):
 """
 Stops the handle, the callback will no longer be called.

 :raises uv.UVError: error while stopping the handle
 """
 if self.closing: return
 code = lib.uv_timer_stop(self.uv_timer)
 if code < 0: raise UVError(code)

 © Copyright 2015, Maximilian Köhl.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/comment.png

_static/plus.png

search.html

 Navigation

 		
 index

 		Python libuv CFFI Bindings 0.0.4.dev0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Maximilian Köhl.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_modules/uv/handle.html

 Navigation

 		
 index

 		Python libuv CFFI Bindings 0.0.4.dev0 documentation »

 		Module code »

 Source code for uv.handle

-*- coding: utf-8 -*-
#
Copyright (C) 2015, Maximilian Köhl <mail@koehlma.de>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

from __future__ import print_function, unicode_literals, division

import enum

from .library import ffi, lib, attach, detach, dummy_callback, is_linux

from .error import UVError, HandleClosedError, LoopClosedError
from .loop import Loop

__all__ = ['Handle']

class HandleType(enum.IntEnum):
 UNKNOWN = lib.UV_UNKNOWN_HANDLE
 HANDLE = lib.UV_HANDLE
 ASYNC = lib.UV_ASYNC
 CHECK = lib.UV_CHECK
 FILE = lib.UV_FILE
 IDLE = lib.UV_IDLE
 PIPE = lib.UV_NAMED_PIPE
 POLL = lib.UV_POLL
 PREPARE = lib.UV_PREPARE
 PROCESS = lib.UV_PROCESS
 SIGNAL = lib.UV_SIGNAL
 STREAM = lib.UV_STREAM
 TCP = lib.UV_TCP
 TIMER = lib.UV_TIMER
 TTY = lib.UV_TTY
 UDP = lib.UV_UDP

 FS_EVENT = lib.UV_FS_EVENT
 FS_POLL = lib.UV_FS_POLL

 def __call__(self, cls):
 self.cls = cls
 return cls

@ffi.callback('uv_close_cb')
def uv_close_cb(uv_handle):
 handle = detach(uv_handle)
 with handle.loop.callback_context: handle.on_closed(handle)
 handle.destroy()

@HandleType.UNKNOWN
@HandleType.HANDLE
[docs]class Handle(object):
 """
 Handles represent long-lived objects capable of performing certain
 operations while active. This is the base class of all handles except
 the file and SSL handle, which are pure Python.

 :raises uv.LoopClosedError: loop has already been closed

 :param loop: loop where the handle should run on
 :param uv_handle: allocated c struct for this handle

 :type loop: Loop
 :type uv_handle: ffi.CData
 """

 __slots__ = ['uv_handle', 'attachment', 'loop', 'on_closed', 'closed', 'closing']

 def __init__(self, uv_handle, loop=None):
 self.uv_handle = ffi.cast('uv_handle_t*', uv_handle)
 self.attachment = attach(self.uv_handle, self)
 self.loop = loop or Loop.get_current()
 """
 Loop where the handle is running on.

 :readonly: True
 :type: Loop
 """
 self.on_closed = dummy_callback
 """
 Callback which should be called after the handle has been closed.

 :readonly: False
 :type: (Handle) -> None
 """
 self.closed = False
 """
 Handle has been closed. This is `True` right after the close callback
 has been called. It means all internal resources are freed and this
 handle is ready to be garbage collected.

 :readonly: True
 :type: bool
 """
 self.closing = False
 """
 Handle is already closed or is closing. This is `True` right after
 close has been called. Operations on a closed or closing handle will
 raise :class:`uv.HandleClosedError`.

 :readonly: True
 :type: bool
 """
 if self.loop.closed: raise LoopClosedError()
 self.loop.handles.add(self)

 @property
 def active(self):
 """
 Handle is active or not. What "active" means depends on the handle:

 - :class:`uv.Async`: is always active and cannot be deactivated

 - :class:`uv.Pipe`, :class:`uv.TCP`, :class:`uv.UDP`, ...: basically
 any handle dealing with IO is active when it is doing something
 involves IO like reading, writing, connecting or listening

 - :class:`uv.Check`, :class:`uv.Idle`, :class:`uv.Timer`, ...: handle
 is active when it has been started and not yet stopped

 :readonly: True
 :type: bool
 """
 if self.closed: return False
 return bool(lib.uv_is_active(self.uv_handle))

 @property
 def referenced(self):
 """
 Handle is referenced or not. If the event loop runs in default mode it
 will exit when there are no more active and referenced handles left. This
 has nothing to do with CPython's reference counting.

 :readonly: False
 :type: bool
 """
 if self.closed: return False
 return bool(lib.uv_has_ref(self.uv_handle))

 @referenced.setter
 def referenced(self, referenced):
 """
 :param referenced: referenced status which should be set
 :type referenced: bool
 """
 if referenced: self.reference()
 else: self.dereference()

 @property
 def send_buffer_size(self):
 """
 Size of the send buffer that the operating system uses for the
 socket. The following handles are supported: TCP and UDP handles
 on Unix and Windows, Pipe handles only on Unix. On all unsupported
 handles this will raise :class:`uv.UVError` with `StatusCode.EINVAL`.

 .. note::

 Unlike libuv this library abstracts the different behaviours on Linux
 and other operating systems. This means, the size set is divided by
 two on Linux because Linux internally multiplies it by two.

 :raises uv.UVError: error while getting/setting the send buffer size
 :raises uv.HandleClosedError: handle has already been closed or is closing
 :readonly: False
 :type: int
 """
 if self.closing: raise HandleClosedError()
 c_buffer_size = ffi.new('int*')
 code = lib.uv_send_buffer_size(self.uv_handle, c_buffer_size)
 if code < 0: raise UVError(code)
 return c_buffer_size[0]

 @send_buffer_size.setter
 def send_buffer_size(self, size):
 """
 :raises uv.UVError: error while getting/setting the send buffer size
 :raises uv.HandleClosedError: handle has already been closed or is closing
 :param size: size of the send buffer
 :type size: int
 """
 if self.closing: raise HandleClosedError()
 c_buffer_size = ffi.new('int*', int(size / 2) if is_linux else size)
 code = lib.uv_send_buffer_size(self.uv_handle, c_buffer_size)
 if code < 0: raise UVError(code)

 @property
 def receive_buffer_size(self):
 """
 Size of the receive buffer that the operating system uses for the
 socket. The following handles are supported: TCP and UDP handles
 on Unix and Windows, Pipe handles only on Unix. On all unsupported
 handles this will raise :class:`uv.UVError` with `StatusCode.EINVAL`.

 .. note::

 Unlike libuv this library abstracts the different behaviours on Linux
 and other operating systems. This means, the size set is divided by
 two on Linux because Linux internally multiplies it by two.

 :raises uv.UVError: error while getting/setting the receive buffer size
 :raises uv.HandleClosedError: handle has already been closed or is closing
 :readonly: False
 :type: int
 """
 if self.closing: raise HandleClosedError()
 c_buffer_size = ffi.new('int*')
 code = lib.uv_recv_buffer_size(self.uv_handle, c_buffer_size)
 if code < 0: raise UVError(code)
 return c_buffer_size[0]

 @receive_buffer_size.setter
 def receive_buffer_size(self, size):
 """
 :raises uv.UVError: error while getting/setting the receive buffer size
 :raises uv.HandleClosedError: handle has already been closed or is closing
 :param size: size of the receive buffer
 :type size: int
 """
 if self.closing: raise HandleClosedError()
 c_buffer_size = ffi.new('int*', int(size / 2) if is_linux else size)
 code = lib.uv_recv_buffer_size(self.uv_handle, c_buffer_size)
 if code < 0: raise UVError(code)

[docs] def fileno(self):
 """
 Gets the platform dependent file descriptor equivalent. The following
 handles are supported: TCP, UDP, TTY, Pipes and Poll. On all other
 handles this will raise :class:`uv.UVError` with `StatusCode.EINVAL`.

 If a handle does not have an attached file descriptor yet this method
 will raise :class:`uv.UVError` with `StatusCode.EBADF`.

 .. warning::

 Be very careful when using this method. Libuv assumes it
 is in control of the file descriptor so any change to it
 may result in unpredictable malfunctions.

 :raises uv.UVError: error while receiving fileno
 :raises uv.HandleClosedError: handle has already been closed or is closing
 :return: platform dependent file descriptor equivalent
 :rtype: int
 """
 if self.closing: raise HandleClosedError()
 uv_fd = ffi.new('uv_os_fd_t*')
 code = lib.uv_fileno(self.uv_handle, uv_fd)
 if code < 0: raise UVError(code)
 return ffi.cast('int*', uv_fd)[0]

[docs] def reference(self):
 """
 References the handle. If the event loop runs in default mode it will
 exit when there are no more active and referenced handles left. This
 has nothing to do with CPython's reference counting. References are
 idempotent, that is, if a handle is already referenced calling this
 method again will have not effect.

 :raises uv.HandleClosedError: handle has already been closed or is closing
 """
 if self.closing: raise HandleClosedError()
 lib.uv_ref(self.uv_handle)

[docs] def dereference(self):
 """
 Dereferences the handle. If the event loop runs in default mode it
 will exit when there are no more active and referenced handles left.
 This has nothing to do with CPython's reference counting. References
 are idempotent, that is, if a handle is not referenced calling this
 method again will have not effect.

 :raises uv.HandleClosedError: handle has already been closed or is closing
 """
 if self.closing: raise HandleClosedError()
 lib.uv_unref(self.uv_handle)

[docs] def close(self, on_closed=None):
 """
 Closes the handle and frees all resources afterwards. Please make sure
 to call this method on any handle you do not need anymore. Handles do
 not close automatically and are also not garbage collected unless you
 have closed them exlicitly (explicit is better than implicit). This
 method is idempotent, that is, if the handle is already closed or is
 closing calling this method will have no effect.

 In-progress requests, like :class:`uv.ConnectRequest` or
 :class:`uv.WriteRequest`, are cancelled and have their callbacks
 called asynchronously with :class:`StatusCode.ECANCELED`

 After this method has been called on a handle no other operations can be
 performed on it, they will raise :class:`uv.HandleClosedError`.

 :param on_closed: callback called after the handle has been closed
 :type on_closed: (Handle) -> None
 """
 if self.closing: return
 self.closing = True
 self.on_closed = on_closed or self.on_closed
 lib.uv_close(self.uv_handle, uv_close_cb)

[docs] def destroy(self):
 """
 .. warning::

 This method is used internally to free all allocated C resources and
 make sure there are no references from Python anymore to those objects
 after the handle has been closed. You should never call it directly!
 """
 self.uv_handle = None
 self.closing = True
 self.closed = True
 self.loop.handles.remove(self)

 © Copyright 2015, Maximilian Köhl.
 Created using Sphinx 1.3.5.

_modules/uv/idle.html

 Navigation

 		
 index

 		Python libuv CFFI Bindings 0.0.4.dev0 documentation »

 		Module code »

 Source code for uv.idle

-*- coding: utf-8 -*-
#
Copyright (C) 2015, Maximilian Köhl <mail@koehlma.de>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

from __future__ import print_function, unicode_literals, division

from .library import ffi, lib, detach, dummy_callback

from .error import UVError, HandleClosedError
from .handle import HandleType, Handle

__all__ = ['Idle']

@ffi.callback('uv_idle_cb')
def uv_idle_cb(uv_idle):
 idle = detach(uv_idle)
 with idle.loop.callback_context:
 idle.callback(idle)

@HandleType.IDLE
[docs]class Idle(Handle):
 """
 Idle handles will run the given callback once per loop
 iteration, right before the :class:`uv.Prepare` handles.

 The notable difference with prepare handles is, that when
 there are active idle handles, the loop will perform a zero
 timeout poll instead of blocking for IO.

 .. warning:

 Despite the name, idle handles will get their callback called on
 every loop iteration, not when the loop is actually "idle".

 :raises uv.UVError: error during the initialization of the handle

 :param loop: event loop which should be used for the handle
 :param callback: callback which should be called before prepare handles

 :type loop: uv.Loop
 :type callback: (uv.Idle) -> None
 """

 __slots__ = ['uv_idle', 'callback']

 def __init__(self, loop=None, callback=None):
 self.uv_idle = ffi.new('uv_idle_t*')
 super(Idle, self).__init__(self.uv_idle, loop)
 self.callback = callback or dummy_callback
 """
 Callback which should be called before prepare handles.

 .. function:: callback(Idle-Handle)

 :readonly: False
 :type: (uv.Idle) -> None
 """
 code = lib.uv_idle_init(self.loop.uv_loop, self.uv_idle)
 if code < 0:
 self.destroy()
 raise UVError(code)

[docs] def start(self, callback=None):
 """
 Starts the handle.

 :raises uv.UVError: error while starting the handle
 :raises uv.HandleClosedError: handle has already been closed or is closing

 :param callback: callback which should be called before prepare handles
 :type callback: (uv.Idle) -> None
 """
 if self.closing: raise HandleClosedError()
 self.callback = callback or self.callback
 code = lib.uv_idle_start(self.uv_idle, uv_idle_cb)
 if code < 0: raise UVError(code)

[docs] def stop(self):
 """
 Stops the handle, the callback will no longer be called.

 :raises uv.UVError: error while stopping the handle
 """
 if self.closing: return
 code = lib.uv_idle_stop(self.uv_idle)
 if code < 0: raise UVError(code)

 def destroy(self):
 self.uv_idle = None
 super(Idle, self).destroy()

 __call__ = start

 © Copyright 2015, Maximilian Köhl.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		Python libuv CFFI Bindings 0.0.4.dev0 documentation »

 All modules for which code is available

		uv.async

		uv.check

		uv.error

		uv.handle

		uv.idle

		uv.poll

		uv.prepare

		uv.signal

		uv.timer

 © Copyright 2015, Maximilian Köhl.
 Created using Sphinx 1.3.5.

_modules/uv/signal.html

 Navigation

 		
 index

 		Python libuv CFFI Bindings 0.0.4.dev0 documentation »

 		Module code »

 Source code for uv.signal

-*- coding: utf-8 -*-
#
Copyright (C) 2015, Maximilian Köhl <mail@koehlma.de>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

from __future__ import print_function, unicode_literals, division

import enum

from .library import ffi, lib, detach, dummy_callback

from .error import UVError, HandleClosedError
from .handle import HandleType, Handle

__all__ = ['Signal', 'Signals']

[docs]class Signals(enum.IntEnum):
 """
 Generic signals enumeration.
 """
 SIGINT = 2
 """
 Is normally delivered when the user presses CTRL+C. However it is
 not generated when terminal is in raw mode.

 :type: int
 """
 SIGBREAK = 21
 """
 Is delivered when the user presses CTRL+BREAK.

 :type: int
 """
 SIGHUP = 1
 """
 Is generated when the user closes the console window. After that the
 OS might terminate the program after a few seconds.

 :type: int
 """
 SIGWINCH = 28
 """
 Is generated when the console window has been resized. On Windows libuv
 emulates SIGWINCH when the program uses a :class:`uv.TTY` handle to
 write to the console. It may not always be delivered in a timely manner,
 because libuv will only detect changes when the cursor is being moved.
 When a readable :class:`uv.TTY` handle is used in raw mode, resizing
 the console buffer will also trigger SIGWINCH.

 :type: int
 """

@ffi.callback('uv_signal_cb')
def uv_signal_cb(uv_signal, signum):
 signal = detach(uv_signal)
 with signal.loop.callback_context:
 signal.callback(signal, signum)

@HandleType.SIGNAL
[docs]class Signal(Handle):
 """
 Signal handles implement Unix style signal handling on a per-event
 loop bases. Reception of the generic :class:`uv.Signals` is emulated
 on Windows. Watchers for other signals can be successfully created,
 but these signals are never received.

 .. note::

 On Linux SIGRT0 and SIGRT1 (signals 32 and 33) are used by the
 NPTL pthreads library to manage threads. Installing watchers for
 those signals will lead to unpredictable behavior and is strongly
 discouraged. Future versions of libuv may simply reject them.

 :raises uv.UVError: error during the initialization of the handle

 :param loop: event loop which should be used for the handle
 :param callback: callback which should be called on signal delivery

 :type loop: Loop
 :type callback: (uv.Signal, int) -> None
 """

 __slots__ = ['uv_signal', 'callback']

 def __init__(self, loop=None, callback=None):
 self.uv_signal = ffi.new('uv_signal_t*')
 super(Signal, self).__init__(self.uv_signal, loop)
 self.callback = callback or dummy_callback
 """
 Callback which should be called on signal delivery.

 .. function:: callback(Signal-Handle, Signal-Number)

 :readonly: False
 :type: (uv.Signal, int) -> None
 """
 code = lib.uv_signal_init(self.loop.uv_loop, self.uv_signal)
 if code < 0:
 self.destroy()
 raise UVError(code)

 @property
 def signum(self):
 """
 Signal being monitored by this handle.

 :raises uv.HandleClosedError: handle has already been closed or is closing

 :readonly: True
 :rtype: int
 """
 if self.closing: raise HandleClosedError()
 return self.uv_signal.signum

[docs] def start(self, signum, callback=None):
 """
 Starts the handle.

 :raises uv.UVError: error while starting the handle
 :raises uv.HandleClosedError: handle has already been closed or is closing

 :param signum: signal number which should be monitored
 :param callback: callback which should be called on signal delivery

 :type signum: int
 :type callback: (uv.Signal) -> None
 """
 if self.closing: raise HandleClosedError()
 self.callback = callback or self.callback
 code = lib.uv_signal_start(self.uv_signal, uv_signal_cb, signum)
 if code < 0: raise UVError(code)

[docs] def stop(self):
 """
 Stops the handle, the callback will no longer be called.

 :raises uv.UVError: error while stopping the handle
 """
 if self.closing: return
 code = lib.uv_signal_stop(self.uv_signal)
 if code < 0: raise UVError(code)

 def destroy(self):
 self.uv_signal = None
 super(Signal, self).destroy()

 __call__ = start

 © Copyright 2015, Maximilian Köhl.
 Created using Sphinx 1.3.5.

