
Python libuv CFFI Bindings
Release 0.0.4.dev0

October 10, 2016

Contents

1 Contents: 1
1.1 Errors – exceptions and error handling . 1
1.2 Handle – handle base class . 1
1.3 Async – async handle . 4
1.4 Check – check handle . 4
1.5 Idle – idle handle . 5
1.6 Poll – poll handle . 6
1.7 Prepare – poll handle . 7
1.8 Signal – signal handle . 8
1.9 Timer – timer handle . 9

2 Indices and tables 11

i

ii

CHAPTER 1

Contents:

1.1 Errors – exceptions and error handling

class uv.StatusCode

SUCCESS = None
Success.

class uv.UVError(code, message=None)

class uv.HandleClosedError

class uv.LoopClosedError

1.2 Handle – handle base class

class uv.Handle(uv_handle, loop=None)
Handles represent long-lived objects capable of performing certain operations while active. This is the base
class of all handles except the file and SSL handle, which are pure Python.

Raises uv.LoopClosedError – loop has already been closed

Parameters

• loop (Loop) – loop where the handle should run on

• uv_handle (ffi.CData) – allocated c struct for this handle

loop
Loop where the handle is running on.

Readonly True

Type Loop

on_closed
Callback which should be called after the handle has been closed.

Readonly False

Type (Handle) -> None

1

Python libuv CFFI Bindings, Release 0.0.4.dev0

closed
Handle has been closed. This is True right after the close callback has been called. It means all internal
resources are freed and this handle is ready to be garbage collected.

Readonly True

Type bool

closing
Handle is already closed or is closing. This is True right after close has been called. Operations on a closed
or closing handle will raise uv.HandleClosedError.

Readonly True

Type bool

active
Handle is active or not. What “active” means depends on the handle:

•uv.Async: is always active and cannot be deactivated

•uv.Pipe, uv.TCP, uv.UDP, ...: basically any handle dealing with IO is active when it is doing
something involves IO like reading, writing, connecting or listening

•uv.Check, uv.Idle, uv.Timer, ...: handle is active when it has been started and not yet stopped

Readonly True

Type bool

referenced
Handle is referenced or not. If the event loop runs in default mode it will exit when there are no more
active and referenced handles left. This has nothing to do with CPython’s reference counting.

Readonly False

Type bool

send_buffer_size
Size of the send buffer that the operating system uses for the socket. The following handles are supported:
TCP and UDP handles on Unix and Windows, Pipe handles only on Unix. On all unsupported handles this
will raise uv.UVError with StatusCode.EINVAL.

Note: Unlike libuv this library abstracts the different behaviours on Linux and other operating systems.
This means, the size set is divided by two on Linux because Linux internally multiplies it by two.

Raises

• uv.UVError – error while getting/setting the send buffer size

• uv.HandleClosedError – handle has already been closed or is closing

Readonly False

Type int

receive_buffer_size
Size of the receive buffer that the operating system uses for the socket. The following handles are sup-
ported: TCP and UDP handles on Unix and Windows, Pipe handles only on Unix. On all unsupported
handles this will raise uv.UVError with StatusCode.EINVAL.

2 Chapter 1. Contents:

Python libuv CFFI Bindings, Release 0.0.4.dev0

Note: Unlike libuv this library abstracts the different behaviours on Linux and other operating systems.
This means, the size set is divided by two on Linux because Linux internally multiplies it by two.

Raises

• uv.UVError – error while getting/setting the receive buffer size

• uv.HandleClosedError – handle has already been closed or is closing

Readonly False

Type int

fileno()
Gets the platform dependent file descriptor equivalent. The following handles are supported: TCP, UDP,
TTY, Pipes and Poll. On all other handles this will raise uv.UVError with StatusCode.EINVAL.

If a handle does not have an attached file descriptor yet this method will raise uv.UVError with Status-
Code.EBADF.

Warning: Be very careful when using this method. Libuv assumes it is in control of the file descriptor
so any change to it may result in unpredictable malfunctions.

Raises

• uv.UVError – error while receiving fileno

• uv.HandleClosedError – handle has already been closed or is closing

Returns platform dependent file descriptor equivalent

Return type int

reference()
References the handle. If the event loop runs in default mode it will exit when there are no more active
and referenced handles left. This has nothing to do with CPython’s reference counting. References are
idempotent, that is, if a handle is already referenced calling this method again will have not effect.

Raises uv.HandleClosedError – handle has already been closed or is closing

dereference()
Dereferences the handle. If the event loop runs in default mode it will exit when there are no more active
and referenced handles left. This has nothing to do with CPython’s reference counting. References are
idempotent, that is, if a handle is not referenced calling this method again will have not effect.

Raises uv.HandleClosedError – handle has already been closed or is closing

close(on_closed=None)
Closes the handle and frees all resources afterwards. Please make sure to call this method on any handle
you do not need anymore. Handles do not close automatically and are also not garbage collected unless
you have closed them exlicitly (explicit is better than implicit). This method is idempotent, that is, if the
handle is already closed or is closing calling this method will have no effect.

In-progress requests, like uv.ConnectRequest or uv.WriteRequest, are cancelled and have their
callbacks called asynchronously with StatusCode.ECANCELED

After this method has been called on a handle no other operations can be performed on it, they will raise
uv.HandleClosedError.

Parameters on_closed ((Handle) -> None) – callback called after the handle has been
closed

1.2. Handle – handle base class 3

https://docs.python.org/3.5/library/functions.html#int

Python libuv CFFI Bindings, Release 0.0.4.dev0

destroy()

Warning: This method is used internally to free all allocated C resources and make sure there are no
references from Python anymore to those objects after the handle has been closed. You should never
call it directly!

1.3 Async – async handle

class uv.Async(loop=None, callback=None)
Async handles will wake-up the event loop from an other thread and run the given callback within the event
loop’s thread. They are the only thread-safe handles.

Raises uv.UVError – error during the initialization of the handle

Parameters

• loop (uv.Loop) – event loop which should be used for the handle

• callback ((uv.Async) -> None) – callback which should be called from within the
event loop

callback
Callback which should be called from within the event loop.

callback(Async-Handle)

Readonly False

Type (uv.Async) -> None

send(callback=None)
Wake-up the event loop and execute the callback afterwards. Multiple calls to this method are coalesced
if they happen before the callback has been called. This means not every call will yield a execution of the
callback.

Raises

• uv.UVError – error while trying to wake-up event loop

• uv.HandleClosedError – handle has already been closed or is closing

Parameters callback ((uv.Async) -> None) – callback which should be called from
within the event loop

1.4 Check – check handle

class uv.Check(loop=None, callback=None)
Check handles will run the given callback once per loop iteration, right after polling for IO.

Raises uv.UVError – error during the initialization of the handle

Parameters

• loop (Loop) – event loop which should be used for the handle

• callback ((uv.Check) -> None) – callback which should be called right after
polling for IO

4 Chapter 1. Contents:

Python libuv CFFI Bindings, Release 0.0.4.dev0

callback
Callback which should be called after polling for IO.

callback(Check-Handle)

Readonly False

Type (uv.Check) -> None

start(callback=None)
Starts the handle.

Raises

• uv.UVError – error while starting the handle

• uv.HandleClosedError – handle has already been closed or is closing

Parameters callback ((uv.Check) -> None) – callback which should be called after
polling for IO

stop()
Stops the handle, the callback will no longer be called.

Raises uv.UVError – error while stopping the handle

1.5 Idle – idle handle

class uv.Idle(loop=None, callback=None)
Idle handles will run the given callback once per loop iteration, right before the uv.Prepare handles.

The notable difference with prepare handles is, that when there are active idle handles, the loop will perform a
zero timeout poll instead of blocking for IO.

Raises uv.UVError – error during the initialization of the handle

Parameters

• loop (uv.Loop) – event loop which should be used for the handle

• callback ((uv.Idle) -> None) – callback which should be called before prepare
handles

callback
Callback which should be called before prepare handles.

callback(Idle-Handle)

Readonly False

Type (uv.Idle) -> None

start(callback=None)
Starts the handle.

Raises

• uv.UVError – error while starting the handle

• uv.HandleClosedError – handle has already been closed or is closing

1.5. Idle – idle handle 5

Python libuv CFFI Bindings, Release 0.0.4.dev0

Parameters callback ((uv.Idle) -> None) – callback which should be called before
prepare handles

stop()
Stops the handle, the callback will no longer be called.

Raises uv.UVError – error while stopping the handle

1.6 Poll – poll handle

class uv.Poll(fd, loop=None, callback=None)
Poll handles are used to watch file descriptors for readability and writability. The purpose of poll handles is to
enable integrating external libraries that rely on the event loop to signal them about the socket status changes.
Using them for any other purpose is not recommended. Use uv.TCP, uv.UDP, etc. instead, which provide
faster an more scalable implementations, that what can be archived with uv.Poll, especially on Windows.

It is possible that poll handles occasionally signal that a file descriptor is readable or writable even when it is
not. The user should therefore always be prepared to handle EAGAIN or equivalent when it attempts to read
from or write to the fd.

It is not okay to have multiple active poll handles for the same socket, this can cause libuv to busyloop or
otherwise malfunction.

Do not close a file descriptor while it is being polled by an active poll handle. This can cause the handle to
report an error, but it might also start polling another socket. However the fd can be safely closed immediately
after uv.Poll.stop() or uv.Handle.close() has been called.

Note: On Windows only sockets can be polled with uv.Poll handles. On Unix any file descriptor that would
be accepted by poll(2) can be used.

Raises uv.UVError – error during the initialization of the handle

Parameters

• fd (int) – file descriptor which should be polled (is set to non-blocking mode)

• loop (Loop) – event loop which should be used for the handle

• callback ((uv.Poll, uv.StatusCode, int) -> None) – callback which
should be called on IO events

fd
File descriptor the handle polls on.

Readonly True

Type int

callback
Callback which should be called on IO events.

callback(Poll-Handle, Status-Code, Event-Mask)

Readonly False

Type (uv.Poll, uv.StatusCode, int) -> None

6 Chapter 1. Contents:

https://docs.python.org/3.5/library/functions.html#int

Python libuv CFFI Bindings, Release 0.0.4.dev0

start(events=<PollEvent.READABLE: 1>, callback=None)
Starts polling the file descriptor for the given events. As soon as an event is detected the callback will be
called with status code uv.StatusCode.SUCCESS and the detected events.

If an error happens while polling the callback gets called with status code < 0 which corresponds to a
uv.StatusCode.

Calling this on a handle that is already active is fine. Doing so will update the events mask that is being
watched for.

Raises

• uv.UVError – error while starting the handle

• uv.HandleClosedError – handle has already been closed or is closing

Parameters

• events (int) – bitmask of events which should be polled for

• callback ((uv.Poll, uv.StatusCode, int) -> None) – callback which
should be called on IO events

stop()
Stops the handle, the callback will no longer be called.

Raises uv.UVError – error while stopping the handle

class uv.PollEvent
Poll event types enumeration.

READABLE = None
File descriptor is readable.

Type int

WRITABLE = None
File descriptor is writable.

Type int

1.7 Prepare – poll handle

class uv.Prepare(loop=None, callback=None)
Prepare handles will run the given callback once per loop iteration, right before polling for IO.

Raises uv.UVError – error during the initialization of the handle

Parameters

• loop (Loop) – event loop which should be used for the handle

• callback ((uv.Prepare) -> None) – callback which should be called right before
polling for IO

callback
Callback which should be called before polling for IO.

callback(Prepare-Handle)

Readonly False

Type (uv.Prepare) -> None

1.7. Prepare – poll handle 7

https://docs.python.org/3.5/library/functions.html#int

Python libuv CFFI Bindings, Release 0.0.4.dev0

start(callback=None)
Starts the handle.

Raises

• uv.UVError – error while starting the handle

• uv.HandleClosedError – handle has already been closed or is closing

Parameters callback ((uv.Prepare) -> None) – callback which should be called be-
fore polling for IO

stop()
Stops the handle, the callback will no longer be called.

Raises uv.UVError – error while stopping the handle

1.8 Signal – signal handle

class uv.Signal(loop=None, callback=None)
Signal handles implement Unix style signal handling on a per-event loop bases. Reception of the generic
uv.Signals is emulated on Windows. Watchers for other signals can be successfully created, but these
signals are never received.

Note: On Linux SIGRT0 and SIGRT1 (signals 32 and 33) are used by the NPTL pthreads library to manage
threads. Installing watchers for those signals will lead to unpredictable behavior and is strongly discouraged.
Future versions of libuv may simply reject them.

Raises uv.UVError – error during the initialization of the handle

Parameters

• loop (Loop) – event loop which should be used for the handle

• callback ((uv.Signal, int) -> None) – callback which should be called on sig-
nal delivery

callback
Callback which should be called on signal delivery.

callback(Signal-Handle, Signal-Number)

Readonly False

Type (uv.Signal, int) -> None

signum
Signal being monitored by this handle.

Raises uv.HandleClosedError – handle has already been closed or is closing

Readonly True

Return type int

start(signum, callback=None)
Starts the handle.

Raises

8 Chapter 1. Contents:

https://docs.python.org/3.5/library/functions.html#int

Python libuv CFFI Bindings, Release 0.0.4.dev0

• uv.UVError – error while starting the handle

• uv.HandleClosedError – handle has already been closed or is closing

Parameters

• signum (int) – signal number which should be monitored

• callback ((uv.Signal) -> None) – callback which should be called on signal
delivery

stop()
Stops the handle, the callback will no longer be called.

Raises uv.UVError – error while stopping the handle

class uv.Signals
Generic signals enumeration.

SIGINT = None
Is normally delivered when the user presses CTRL+C. However it is not generated when terminal is in raw
mode.

Type int

SIGBREAK = None
Is delivered when the user presses CTRL+BREAK.

Type int

SIGHUP = None
Is generated when the user closes the console window. After that the OS might terminate the program after
a few seconds.

Type int

SIGWINCH = None
Is generated when the console window has been resized. On Windows libuv emulates SIGWINCH when
the program uses a uv.TTY handle to write to the console. It may not always be delivered in a timely
manner, because libuv will only detect changes when the cursor is being moved. When a readable uv.TTY
handle is used in raw mode, resizing the console buffer will also trigger SIGWINCH.

Type int

1.9 Timer – timer handle

class uv.Timer(loop=None, callback=None)
Timer handles are used to schedule callbacks to be called in the future.

Raises uv.UVError – error during the initialization of the handle

Parameters

• loop (Loop) – event loop which should be used for the handle

• callback ((uv.Timer) -> None) – callback which should be called on timeout

callback
Callback which should be called on timeout.

callback(Timer-Handle)

Readonly False

1.9. Timer – timer handle 9

https://docs.python.org/3.5/library/functions.html#int

Python libuv CFFI Bindings, Release 0.0.4.dev0

Type (uv.Timer) -> None

repeat
The repeat interval value in milliseconds. The timer will be scheduled to run on the given interval, regard-
less of the callback execution duration, and will follow normal timer semantics in the case of time-slice
overrun.

For example, if a 50ms repeating timer first runs for 17ms, it will be scheduled to run again 33ms later. If
other tasks consume more than the 33ms following the first timer callback, then the callback will run as
soon as possible.

Note: If the repeat value is set from a timer callback it does not immediately take effect. If the timer was
non-repeating before, it will have been stopped. If it was repeating, then the old repeat value will have
been used to schedule the next timeout.

Raises uv.HandleClosedError – handle has already been closed or is closing

Readonly False

Return type int

again()
Stop the timer, and if it is repeating restart it using the repeat value as the timeout. If the timer has never
been started before it raises uv.UVError with uv.StatusCode.EINVAL.

Raises

• uv.UVError – error while restarting the timer

• uv.HandleClosedError – handle has already been closed or is closing

start(timeout, callback=None, repeat=0)
Starts the timer. If timeout is zero, the callback fires on the next event loop iteration. If repeat is non-zero,
the callback fires first after timeout milliseconds and then repeatedly after repeat milliseconds.

Raises

• uv.UVError – error while starting the handle

• uv.HandleClosedError – handle has already been closed or is closing

Parameters

• timeout (int) – timeout which should be used (in milliseconds)

• callback ((uv.Timer) -> None) – callback which should be called on timeout

• repeat (int) – repeat interval which should be set (in milliseconds)

stop()
Stops the handle, the callback will no longer be called.

Raises uv.UVError – error while stopping the handle

10 Chapter 1. Contents:

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

11

Python libuv CFFI Bindings, Release 0.0.4.dev0

12 Chapter 2. Indices and tables

Index

A
active (uv.Handle attribute), 2
again() (uv.Timer method), 10
Async (class in uv), 4
Async.callback() (in module uv), 4

C
callback (uv.Async attribute), 4
callback (uv.Check attribute), 4
callback (uv.Idle attribute), 5
callback (uv.Poll attribute), 6
callback (uv.Prepare attribute), 7
callback (uv.Signal attribute), 8
callback (uv.Timer attribute), 9
Check (class in uv), 4
Check.callback() (in module uv), 5
close() (uv.Handle method), 3
closed (uv.Handle attribute), 1
closing (uv.Handle attribute), 2

D
dereference() (uv.Handle method), 3
destroy() (uv.Handle method), 3

F
fd (uv.Poll attribute), 6
fileno() (uv.Handle method), 3

H
Handle (class in uv), 1
HandleClosedError (class in uv), 1

I
Idle (class in uv), 5
Idle.callback() (in module uv), 5

L
loop (uv.Handle attribute), 1
LoopClosedError (class in uv), 1

O
on_closed (uv.Handle attribute), 1

P
Poll (class in uv), 6
Poll.callback() (in module uv), 6
PollEvent (class in uv), 7
Prepare (class in uv), 7
Prepare.callback() (in module uv), 7

R
READABLE (uv.PollEvent attribute), 7
receive_buffer_size (uv.Handle attribute), 2
reference() (uv.Handle method), 3
referenced (uv.Handle attribute), 2
repeat (uv.Timer attribute), 10

S
send() (uv.Async method), 4
send_buffer_size (uv.Handle attribute), 2
SIGBREAK (uv.Signals attribute), 9
SIGHUP (uv.Signals attribute), 9
SIGINT (uv.Signals attribute), 9
Signal (class in uv), 8
Signal.callback() (in module uv), 8
Signals (class in uv), 9
signum (uv.Signal attribute), 8
SIGWINCH (uv.Signals attribute), 9
start() (uv.Check method), 5
start() (uv.Idle method), 5
start() (uv.Poll method), 6
start() (uv.Prepare method), 7
start() (uv.Signal method), 8
start() (uv.Timer method), 10
StatusCode (class in uv), 1
stop() (uv.Check method), 5
stop() (uv.Idle method), 6
stop() (uv.Poll method), 7
stop() (uv.Prepare method), 8
stop() (uv.Signal method), 9

13

Python libuv CFFI Bindings, Release 0.0.4.dev0

stop() (uv.Timer method), 10
SUCCESS (uv.StatusCode attribute), 1

T
Timer (class in uv), 9
Timer.callback() (in module uv), 9

U
UVError (class in uv), 1

W
WRITABLE (uv.PollEvent attribute), 7

14 Index

	Contents:
	Errors – exceptions and error handling
	Handle – handle base class
	Async – async handle
	Check – check handle
	Idle – idle handle
	Poll – poll handle
	Prepare – poll handle
	Signal – signal handle
	Timer – timer handle

	Indices and tables

