
Python libuv CFFI Bindings
Release 0.1.0.dev0

February 13, 2016

Contents

1 Contents: 1
1.1 Errors – exceptions and error handling . 1
1.2 Loop – event loop . 11
1.3 Handle – handle base class . 15
1.4 Async – async handle . 19
1.5 Check – check handle . 19
1.6 Idle – idle handle . 20
1.7 Pipe – pipe handle . 20
1.8 Poll – poll handle . 22
1.9 Prepare – poll handle . 23
1.10 Process – process handle . 24
1.11 Signal – signal handle . 26
1.12 Timer – timer handle . 27
1.13 Stream – stream handle . 28
1.14 TCP – TCP handle . 32
1.15 TTY – TTY handle . 34
1.16 UDP – UDP handle . 35
1.17 FSEvent – fs event handle . 38
1.18 FSPoll – fs poll handle . 40

2 Indices and tables 43

Python Module Index 45

i

ii

CHAPTER 1

Contents:

1.1 Errors – exceptions and error handling

class uv.error.StatusCodes
Status codes enumeration. Status codes are instances of this class and — beside SUCCESS — vary across
platforms. Status codes other than SUCCESS are linked with a corresponding exception.

SUCCESS = None
Success — no error occoured.

Type uv.StatusCodes

E2BIG = None
Argument list too long.

Type uv.StatusCodes

EACCES = None
Permission denied.

Type uv.StatusCodes

EADDRINUSE = None
Address already in use.

Type uv.StatusCodes

EADDRNOTAVAIL = None
Address not available.

Type uv.StatusCodes

EAFNOSUPPORT = None
Address family not supported.

Type uv.StatusCodes

EAGAIN = None
Resource temporarily unavailable.

Type uv.StatusCodes

EAI_ADDRFAMILY = None
Address family not supported.

Type uv.StatusCodes

1

Python libuv CFFI Bindings, Release 0.1.0.dev0

EAI_AGAIN = None
Temporary failure.

Type uv.StatusCodes

EAI_BADFLAGS = None
Bad address flags value.

Type uv.StatusCodes

EAI_BADHINTS = None
Invalid value for hints.

Type uv.StatusCodes

EAI_CANCELED = None
Request canceled.

Type uv.StatusCodes

EAI_FAIL = None
Permanent failure.

Type uv.StatusCodes

EAI_FAMILY = None
Address family not supported.

Type uv.StatusCodes

EAI_MEMORY = None
Out of memory.

Type uv.StatusCodes

EAI_NODATA = None
No address.

Type uv.StatusCodes

EAI_NONAME = None
Unknown node or service.

Type uv.StatusCodes

EAI_OVERFLOW = None
Argument buffer overflow.

Type uv.StatusCodes

EAI_PROTOCOL = None
Resolved protocol is unknown.

Type uv.StatusCodes

EAI_SERVICE = None
Service not available for socket type.

Type uv.StatusCodes

EAI_SOCKTYPE = None
Socket type not supported.

Type uv.StatusCodes

EALREADY = None
Connection already in progress.

2 Chapter 1. Contents:

Python libuv CFFI Bindings, Release 0.1.0.dev0

Type uv.StatusCodes

EBADF = None
Bad file descriptor.

Type uv.StatusCodes

EBUSY = None
Resource busy or locked.

Type uv.StatusCodes

ECANCELED = None
Operation canceled.

Type uv.StatusCodes

ECHARSET = None
Invalid Unicode character.

Type uv.StatusCodes

ECONNABORTED = None
Software caused connection abort.

Type uv.StatusCodes

ECONNREFUSED = None
Connection refused.

Type uv.StatusCodes

ECONNRESET = None
Connection reset by peer.

Type uv.StatusCodes

EDESTADDRREQ = None
Destination address required.

Type uv.StatusCodes

EEXIST = None
File already exists.

Type uv.StatusCodes

EFAULT = None
Bad address in system call argument.

Type uv.StatusCodes

EFBIG = None
File too large.

Type uv.StatusCodes

EHOSTUNREACH = None
Host is unreachable.

Type uv.StatusCodes

EINTR = None
Interrupted system call.

Type uv.StatusCodes

1.1. Errors – exceptions and error handling 3

Python libuv CFFI Bindings, Release 0.1.0.dev0

EINVAL = None
Invalid argument.

Type uv.StatusCodes

EIO = None
IO error.

Type uv.StatusCodes

EISCONN = None
Socket is already connected.

Type uv.StatusCodes

EISDIR = None
Illegal operation on a directory.

Type uv.StatusCodes

ELOOP = None
Too many symbolic links encountered.

Type uv.StatusCodes

EMFILE = None
Too many open files.

Type uv.StatusCodes

EMSGSIZE = None
Message too long.

Type uv.StatusCodes

ENAMETOOLONG = None
Name too long.

Type uv.StatusCodes

ENETDOWN = None
Network is down.

Type uv.StatusCodes

ENETUNREACH = None
Network is unreachable.

Type uv.StatusCodes

ENFILE = None
File table overflow.

Type uv.StatusCodes

ENOBUFS = None
No buffer space available.

Type uv.StatusCodes

ENODEV = None
No such device.

Type uv.StatusCodes

ENOENT = None
No such file or directory.

4 Chapter 1. Contents:

Python libuv CFFI Bindings, Release 0.1.0.dev0

Type uv.StatusCodes

ENOMEM = None
Not enough memory.

Type uv.StatusCodes

ENONET = None
Machine is not on the network.

Type uv.StatusCodes

ENOPROTOOPT = None
Protocol not available.

Type uv.StatusCodes

ENOSPC = None
No space left on device.

Type uv.StatusCodes

ENOSYS = None
Function not implemented.

Type uv.StatusCodes

ENOTCONN = None
Socket is not connected.

Type uv.StatusCodes

ENOTDIR = None
Not a directory.

Type uv.StatusCodes

ENOTEMPTY = None
Directory not empty.

Type uv.StatusCodes

ENOTSOCK = None
Socket operation on non-socket.

Type uv.StatusCodes

ENOTSUP = None
Operation not supported on socket.

Type uv.StatusCodes

EPERM = None
Operation not permitted.

Type uv.StatusCodes

EPIPE = None
Broken pipe.

Type uv.StatusCodes

EPROTO = None
Protocol error.

Type uv.StatusCodes

1.1. Errors – exceptions and error handling 5

Python libuv CFFI Bindings, Release 0.1.0.dev0

EPROTONOSUPPORT = None
Protocol not supported.

Type uv.StatusCodes

EPROTOTYPE = None
Protocol wrong type for socket.

Type uv.StatusCodes

ERANGE = None
Result too large.

Type uv.StatusCodes

EROFS = None
Read-only file system.

Type uv.StatusCodes

ESHUTDOWN = None
Cannot send after transport endpoint shutdown.

Type uv.StatusCodes

ESPIPE = None
Invalid seek.

Type uv.StatusCodes

ESRCH = None
No such process.

Type uv.StatusCodes

ETIMEDOUT = None
Connection timed out.

Type uv.StatusCodes

ETXTBSY = None
Text file is busy.

Type uv.StatusCodes

EXDEV = None
Cross-device link not permitted.

Type uv.StatusCodes

UNKNOWN = None
Unknown error.

Type uv.StatusCodes

EOF = None
End of file.

Type uv.StatusCodes

ENXIO = None
No such device or address.

Type uv.StatusCodes

EMLINK = None
Too many links.

6 Chapter 1. Contents:

Python libuv CFFI Bindings, Release 0.1.0.dev0

Type uv.StatusCodes

EHOSTDOWN = None
Host is down.

Type uv.StatusCodes

exception
Corresponding exception (subclass of uv.error.UVError).

Readonly True

Return type Subclass[uv.error.UVError]

name
Human readable error name.

Readonly True

Return type unicode

message
Human readable error message.

Readonly True

Return type unicode

classmethod get(code)
Look up the given status code und return the corresponding instance of uv.StatusCodes or the original
integer if there is no such status code.

Parameters code (uv.StatusCodes | int | None) – potential status code

Returns status code instance or original status code integer

Return type uv.StatusCodes | int

exception uv.error.UVError(code=None, message=’‘)
Base class of all uv-related exceptions.

code = None
Error-Code

Readonly True

Type uv.StatusCodes | int | None

name = None
Error-Name

Readonly True

Type unicode

message = None
Error-Message

Readonly True

Type unicode

exception uv.error.ArgumentError(code=None, message=’‘)
Invalid arguments.

exception uv.error.TemporaryUnavailableError(code=None, message=’‘)
Resource temporary unavailable.

1.1. Errors – exceptions and error handling 7

Python libuv CFFI Bindings, Release 0.1.0.dev0

exception uv.error.CanceledError(code=None, message=’‘)
Request canceled.

exception uv.error.PermanentError(code=None, message=’‘)
Permanent failure.

exception uv.error.PermissionError(code=None, message=’‘)
Permission denied.

exception uv.error.BadFileDescriptorError(code=None, message=’‘)
Bad file descriptor.

exception uv.error.ResourceBusyError(code=None, message=’‘)
Resource busy or locked.

exception uv.error.CharsetError(code=None, message=’‘)
Invalid unicode character.

exception uv.error.FileExistsError(code=None, message=’‘)
File already exists.

exception uv.error.FileTooLargeError(code=None, message=’‘)
File too large.

exception uv.error.InterruptedError(code=None, message=’‘)
Interrupted system call.

exception uv.error.IOError(code=None, message=’‘)
Generic IO related error.

exception uv.error.IsConnectedError(code=None, message=’‘)
Socket is already connected.

exception uv.error.IsADirectoryError(code=None, message=’‘)
Illegal operation on a directory.

exception uv.error.NotADirectoryError(code=None, message=’‘)
Not a directory.

exception uv.error.NotEmptyError(code=None, message=’‘)
Directory is not empty.

exception uv.error.MassageTooLongError(code=None, message=’‘)
Message too long.

exception uv.error.NameTooLongError(code=None, message=’‘)
Name too long.

exception uv.error.BufferSpaceError(code=None, message=’‘)
No buffer space available.

exception uv.error.NoSpaceError(code=None, message=’‘)
No space left on the device.

exception uv.error.NotImplementedError(code=None, message=’‘)
Function not implemented.

exception uv.error.NotConnectedError(code=None, message=’‘)
Socket is not connected.

exception uv.error.HostUnreachableError(code=None, message=’‘)
Host is unreachable.

8 Chapter 1. Contents:

Python libuv CFFI Bindings, Release 0.1.0.dev0

exception uv.error.ResultTooLargeError(code=None, message=’‘)
Result too large.

exception uv.error.SeekError(code=None, message=’‘)
Invalid seek.

exception uv.error.ProcessLookupError(code=None, message=’‘)
No such progress.

exception uv.error.TimeoutError(code=None, message=’‘)
Operation timed out.

exception uv.error.CrossDeviceError(code=None, message=’‘)
Cross device link not permitted.

exception uv.error.EOFError(code=None, message=’‘)
End of file error.

exception uv.error.UnsupportedOperation(code=None, message=’‘)
Base class of all unsupported operation related errors.

exception uv.error.ClosedStructureError
Invalid operation on closed structure.

exception uv.error.ClosedHandleError
Invalid operation on closed handle.

exception uv.error.ClosedLoopError
Invalid operation on closed loop.

exception uv.error.NotSocketError(code=None, message=’‘)
Socket operation on non-socket.

exception uv.error.NotSupportedError(code=None, message=’‘)
Operation not supported on socket.

exception uv.error.ProtocolError(code=None, message=’‘)
Protocol error.

exception uv.error.ProtocolNoOptionError(code=None, message=’‘)
Protocol option unavailable.

exception uv.error.ProtocolNotSupportedError(code=None, message=’‘)
Protocol not supported.

exception uv.error.ProtocolTypeError(code=None, message=’‘)
Protocol wrong type for socket.

exception uv.error.AddressError(code=None, message=’‘)
Base class of all address related errors.

exception uv.error.AddressUnavailableError(code=None, message=’‘)
Address not available.

exception uv.error.AddressInUseError(code=None, message=’‘)
Address already in use.

exception uv.error.AddressFamilyError(code=None, message=’‘)
Address family not supported.

exception uv.error.AddressFlagsError(code=None, message=’‘)
Bad address flags value.

1.1. Errors – exceptions and error handling 9

Python libuv CFFI Bindings, Release 0.1.0.dev0

exception uv.error.AddressHintsError(code=None, message=’‘)
Bad address hints value.

exception uv.error.AddressDataError(code=None, message=’‘)
No address given.

exception uv.error.AddressNameError(code=None, message=’‘)
Unknown node or service.

exception uv.error.AddressProtocolError(code=None, message=’‘)
Resolved protocol is unknown.

exception uv.error.AddressServiceError(code=None, message=’‘)
Service not available for socket type.

exception uv.error.AddressSocketTypeError(code=None, message=’‘)
Socket type not supported.

exception uv.error.DestinationAddressError(code=None, message=’‘)
Destination address required.

exception uv.error.ConnectionError(code=None, message=’‘)
Base class of all connection related errors.

exception uv.error.BrokenPipeError(code=None, message=’‘)
Broken pipe.

exception uv.error.ConnectionAbortedError(code=None, message=’‘)
Software caused connection abort.

exception uv.error.ConnectionRefusedError(code=None, message=’‘)
Connection refused.

exception uv.error.ConnectionResetError(code=None, message=’‘)
Connection reset by peer.

exception uv.error.ConnectionInProgressError(code=None, message=’‘)
Connection already in progress.

exception uv.error.NotFoundError(code=None, message=’‘)
Base class of all not found related errors.

exception uv.error.DeviceNotFoundError(code=None, message=’‘)
No such device or address.

exception uv.error.FileNotFoundError(code=None, message=’‘)
No such file or directory.

exception uv.error.NetworkError(code=None, message=’‘)
Base class of all network related errors.

exception uv.error.NetworkDownError(code=None, message=’‘)
Network is down.

exception uv.error.NetworkUnreachableError(code=None, message=’‘)
Network is unreachable.

exception uv.error.NoNetworkError(code=None, message=’‘)
Machine is not on the network.

exception uv.error.SystemFailureError(code=None, message=’‘)
Base class of all system related errors.

10 Chapter 1. Contents:

Python libuv CFFI Bindings, Release 0.1.0.dev0

exception uv.error.MemoryError(code=None, message=’‘)
Not enough memory.

exception uv.error.TooManyLinksError(code=None, message=’‘)
Too many links encountered.

exception uv.error.TooManySymbolicLinksError(code=None, message=’‘)
Too many symbolic links encountered.

exception uv.error.TooManyOpenFilesError(code=None, message=’‘)
Too many open files.

exception uv.error.FileTableOverflowError(code=None, message=’‘)
File table overflow.

1.2 Loop – event loop

class uv.Loop(allocator=None, buffer_size=65536, default=False)
The event loop is the central part of this library. It takes care of polling for IO and scheduling callbacks to be
run based on different sources of events.

classmethod get_default(instantiate=True, **keywords)
Get the default (across multiple threads) event loop. Note that although this returns the same loop across
multiple threads loops are not thread safe. Normally there is one thread running the default loop and others
interfering with it trough uv.Async handles or uv.Loop.call_later().

Parameters instantiate (bool) – instantiate the default event loop if it does not exist

Returns global default loop

Return type Loop

classmethod get_current(instantiate=True, **keywords)
Get the current (thread local) default event loop. Loops register themselves as current loop on instantiation
and in their uv.Loop.run() method.

Parameters instantiate (bool) – instantiate a new loop if there is no current loop

Returns current thread’s default loop

Return type Loop

excepthook = None
If an exception occurs during the execution of a callback this excepthook is called with the corresponding
event loop and exception details. The default behavior is to print the traceback to stderr and stop the event
loop. To override the default behavior assign a custom function to this attribute.

Note: If the excepthook raises an exception itself the program would be in an undefined state. Therefore
it terminates with sys.exit(1) in that case immediately.

excepthook(loop, exc_type, exc_value, exc_traceback)
Parameters

• loop (uv.Loop) – corresponding event loop
• exc_type (type) – exception type (subclass of BaseException)
• exc_value (BaseException) – exception instance
• exc_traceback (traceback) – traceback which encapsulates the call stack at the

point where the exception originally occurred

1.2. Loop – event loop 11

https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#type
https://docs.python.org/3.5/library/exceptions.html#BaseException
https://docs.python.org/3.5/library/exceptions.html#BaseException
https://docs.python.org/3.5/library/traceback.html#module-traceback

Python libuv CFFI Bindings, Release 0.1.0.dev0

Readonly False

Type Callable[[uv.Loop, type, Exception, traceback.Traceback], None]

exc_type = None
Type of last exception handled by the excepthook.

Readonly True

Type type

exc_value = None
Instance of last exception handled by the excepthook.

Readonly True

Type BaseException

exc_traceback = None
Traceback of the last exception handled by the excepthook.

Readonly True

Type traceback

closed
True if and only if the loop has been closed.

Readonly True

Return type bool

alive
True if there are active and referenced handles running on the loop, False otherwise.

Readonly True

Return type bool

now
Current internal timestamp in milliseconds. The timestamp increases monotonically from some arbitrary
point in time.

Readonly True

Return type int

handles
Set of all handles running on the loop.

Readonly True

Return type set

fileno()
Get the file descriptor of the backend. This is only supported on kqueue, epoll and event ports.

Raises

• uv.UVError – error getting file descriptor

• uv.ClosedLoopError – loop has already been closed

Returns backend file descriptor

Return type int

12 Chapter 1. Contents:

https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#set
https://docs.python.org/3.5/library/functions.html#int

Python libuv CFFI Bindings, Release 0.1.0.dev0

make_current()
Make the loop the current thread local default loop.

update_time()
Update the event loop’s concept of “now”. Libuv caches the current time at the start of the event loop tick
in order to reduce the number of time-related system calls.

Raises uv.ClosedLoopError – loop has already been closed

Note: You won’t normally need to call this function unless you have callbacks that block the event loop for
longer periods of time, where “longer” is somewhat subjective but probably on the order of a millisecond
or more.

get_timeout()
Get the poll timeout. The return value is in milliseconds, or -1 for no timeout.

Raises uv.ClosedLoopError – loop has already been closed

Returns backend timeout in milliseconds

Return type int

run(mode=<RunModes.DEFAULT: 0>)
Run the loop in the specified mode.

Raises uv.ClosedLoopError – loop has already been closed

Parameters mode (uv.RunModes) – run mode

Returns run mode specific return value

Return type bool

stop()
Stop the event loop, causing uv.Loop.run() to end as soon as possible. This will happen not sooner
than the next loop iteration. If this method was called before blocking for IO, the loop will not block for
IO on this iteration.

close()
Closes all internal loop resources. This method must only be called once the loop has finished its execution
or it will raise uv.error.ResourceBusyError.

Note: Loops are automatically closed when they are garbage collected. However because the exact time
this happens is non-deterministic you should close them explicitly.

Raises

• uv.UVError – error while closing the loop

• uv.error.ResourceBusyError – loop is currently running or there are pending
operations

close_all_handles(on_closed=None)
Close all handles.

Parameters on_closed (Callable[[uv.Handle], None]) – callback which should
run after a handle has been closed (overrides the current callback if specified)

1.2. Loop – event loop 13

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool

Python libuv CFFI Bindings, Release 0.1.0.dev0

call_later(callback, *arguments, **keywords)
Schedule a callback to run at some later point in time.

This method is thread safe.

Parameters

• callback (callable) – callback which should run at some later point in time

• arguments (tuple) – arguments that should be passed to the callback

• keywords (dict) – keyword arguments that should be passed to the callback

on_wakeup()
Called after the event loop has been woken up.

Warning: This method is only for internal purposes and is not part of the official API. You
should never call it directly!

handle_exception()
Handle the current exception using the excepthook.

Warning: This method is only for internal purposes and is not part of the official API. You should
never call it directly!

structure_set_pending(structure)
Add a structure to the set of pending structures.

Warning: This method is only for internal purposes and is not part of the official API. You should
never call it directly!

structure_clear_pending(structure)
Remove a structure from the set of pending structures.

Warning: This method is only for internal purposes and is not part of the official API. You should
never call it directly!

structure_is_pending(structure)
Return true if and only if the structure is pending.

Warning: This method is only for internal purposes and is not part of the official API. You should
never call it directly!

class uv.RunModes
Run modes to control the behavior of uv.Loop.run().

DEFAULT = None
Run the event loop until there are no more active and referenced handles or requests. uv.Loop.run()
returns True if uv.Loop.stop() was called and there are still active handles or requests and False
otherwise.

Type uv.RunModes

ONCE = None
Poll for IO once. Note that uv.Loop.run() will block if there are no pending callbacks.

14 Chapter 1. Contents:

https://docs.python.org/3.5/library/functions.html#callable
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/stdtypes.html#dict

Python libuv CFFI Bindings, Release 0.1.0.dev0

uv.Loop.run() returns True if there are still active handles or requests which means the event loop
should run again sometime in the future.

Type uv.RunModes

NOWAIT = None
Poll for IO once but do not block if there are no pending callbacks. uv.Loop.run() returns True if
there are still active handles or requests which means the event loop should run again sometime in the
future.

Type uv.RunModes

class uv.loop.Allocator
Abstract base class for read buffer allocators. Allows swappable allocation strategies and custom read result
types.

Warning: This class exposes some details of the underlying CFFI based wrapper — use it with caution.
Any errors in the allocator might lead to unpredictable behavior.

allocate(handle, suggested_size, uv_buffer)
Called if libuv needs a new read buffer. The allocated chunk of memory has to be assigned to uv_buf.base
and the length of the chunk to uv_buf.len use library.uv_buffer_set() for assigning. Base might
be NULL which triggers an ENOBUFS error in the read callback.

Parameters

• handle (uv.Handle) – handle caused the read

• suggested_size (int) – suggested buffer size

• uv_buffer (ffi.CData[uv_buf_t]) – uv target buffer

finalize(handle, length, uv_buffer)
Called in the read callback to access the read buffer’s data. The result of this call is directly passed to the
user’s read callback which allows to use a custom read result type.

Parameters

• handle (uv.Handle) – handle caused the read

• length (int) – length of bytes read

• uv_buffer (ffi.CData[uv_buf_t]) – uv buffer used for reading

Returns buffer’s data (default type is bytes)

Return type Any | bytes

class uv.loop.DefaultAllocator(buffer_size=65536)
Default read buffer allocator which only uses one buffer and copies the data to a python bytes object after
reading.

1.3 Handle – handle base class

class uv.Handle(loop, arguments=())
Handles represent long-lived objects capable of performing certain operations while active. This is the base
class of all handles except the file and SSL handle, which are pure Python.

1.3. Handle – handle base class 15

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bytes
https://docs.python.org/3.5/library/functions.html#bytes

Python libuv CFFI Bindings, Release 0.1.0.dev0

Note: Handles underlie a special garbage collection strategy which means they are not garbage collected as
other objects. If a handle is able to do anything in the program for example calling a callback they are not
garbage collected.

Raises uv.LoopClosedError – loop has already been closed

Parameters

• loop (uv.Loop) – loop where the handle should run on

• arguments (tuple) – arguments passed to the libuv handle init function

loop
Loop the handle is running on.

Readonly True

Type uv.Loop

on_closed
Callback which should run after the handle has been closed.

on_closed(handle)
Parameters handle (uv.Handle) – handle which has been closed

Readonly False

Type Callable[[uv.Handle], None]

data
User-specific data of any type. This is necessary because of the usage of slots.

Readonly False

Type Any

allocator
Allocator used to allocate new read buffers for this handle.

Readonly False

Type uv.loop.Allocator

closing
Handle is already closed or is closing. This is True right after close has been called. Operations on a closed
or closing handle will raise uv.ClosedHandleError.

Readonly True

Type bool

closed
Handle has been closed. This is True right after the close callback has been called. It means all internal
resources are freed and this handle is ready to be garbage collected.

Readonly True

Type bool

active
Handle is active or not. What “active” means depends on the handle type:

16 Chapter 1. Contents:

https://docs.python.org/3.5/library/stdtypes.html#tuple

Python libuv CFFI Bindings, Release 0.1.0.dev0

uv.Async: is always active and cannot be deactivated

uv.Pipe, uv.TCP, uv.UDP, . . . : basically any handle dealing with IO is active when it is doing some-
thing involves IO like reading, writing, connecting or listening

uv.Check, uv.Idle, uv.Timer, . . . : handle is active when it has been started and not yet stopped

Readonly True

Type bool

referenced
Handle is referenced or not. If the event loop runs in default mode it will exit when there are no more
active and referenced handles left. This has nothing to do with CPython’s reference counting.

Readonly False

Type bool

send_buffer_size
Size of the send buffer that the operating system uses for the socket. The following handles are supported:
TCP and UDP handles on Unix and Windows, Pipe handles only on Unix. On all unsupported handles this
will raise uv.UVError with error code EINVAL (uv.error.ArgumentError).

Note: Unlike libuv this library abstracts the different behaviours on Linux and other operating systems.
This means, the size set is divided by two on Linux because Linux internally multiplies it by two.

Raises

• uv.UVError – error while getting/setting the send buffer size

• uv.ClosedHandleError – handle has already been closed or is closing

Readonly False

Type int

receive_buffer_size
Size of the receive buffer that the operating system uses for the socket. The following handles are sup-
ported: TCP and UDP handles on Unix and Windows, Pipe handles only on Unix. On all unsupported
handles this will raise uv.UVError with error code EINVAL (uv.error.ArgumentError).

Note: Unlike libuv this library abstracts the different behaviours on Linux and other operating systems.
This means, the size set is divided by two on Linux because Linux internally multiplies it by two.

Raises

• uv.UVError – error while getting/setting the receive buffer size

• uv.ClosedHandleError – handle has already been closed or is closing

Readonly False

Type int

fileno()
Get the platform dependent file descriptor equivalent. The following handles are supported: TCP, UDP,

1.3. Handle – handle base class 17

Python libuv CFFI Bindings, Release 0.1.0.dev0

TTY, Pipes and Poll. On all other handles this will raise uv.UVError with error code EINVAL
(uv.error.ArgumentError).

If a handle does not have an attached file descriptor yet this method will raise uv.UVError with error
code EBADF (uv.error.BadFileDescriptorError).

Warning: Be very careful when using this method. Libuv assumes it is in control of the file descriptor
so any change to it may result in unpredictable malfunctions.

Raises

• uv.UVError – error while receiving fileno

• uv.ClosedHandleError – handle has already been closed or is closing

Returns platform dependent file descriptor equivalent

Return type int

reference()
Reference the handle. If the event loop runs in default mode it will exit when there are no more active
and referenced handles left. This has nothing to do with CPython’s reference counting. References are
idempotent, that is, if a handle is referenced calling this method again will have not effect.

Raises uv.ClosedHandleError – handle has already been closed or is closing

dereference()
Dereference the handle. If the event loop runs in default mode it will exit when there are no more active
and referenced handles left. This has nothing to do with CPython’s reference counting. References are
idempotent, that is, if a handle is not referenced calling this method again will have not effect.

Raises uv.ClosedHandleError – handle has already been closed or is closing

close(on_closed=None)
Close the handle. Please make sure to call this method on any handle you do not need anymore. This
method is idempotent, that is, if the handle is already closed or is closing calling it will have no effect at
all.

In-progress requests, like connect or write requests, are cancelled and have their callbacks called asyn-
chronously with uv.StatusCodes.ECANCELED.

After this method has been called on a handle no operations can be performed on it (they raise
uv.ClosedHandleError).

Note: Handles are automatically closed when they are garbage collected. However because the exact time
this happens is non-deterministic you should close all handles explicitly. Especially if they handle external
resources.

Parameters on_closed (Callable[[uv.Handle], None]) – callback which should
run after the handle has been closed (overrides the current callback if specified)

set_pending()

Warning: This method is only for internal purposes and is not part of the official API. It deactivates
the garbage collection for the handle which means the handle and the corresponding loop are excluded
from garbage collection. You should never call it directly!

18 Chapter 1. Contents:

https://docs.python.org/3.5/library/functions.html#int

Python libuv CFFI Bindings, Release 0.1.0.dev0

clear_pending()

Warning: This method is only for internal purposes and is not part of the official API. It reactivates
the garbage collection for the handle. You should never call it directly!

1.4 Async – async handle

class uv.Async(loop=None, on_wakeup=None)
Async handles are able to wakeup the event loop of another thread and run the given callback in the event loop’s
thread. Although the uv.Async.send() method is thread-safe the constructor is not. To run a given callback
in the event loop’s thread without creating an uv.Async handle use uv.Loop.call_later().

on_wakeup
Callback which should run in the event loop’s thread after the event loop has been woken up.

on_wakeup(async_handle)
Parameters async_handle (uv.Async) – handle the call originates from

Readonly False

Type Callable[[uv.Async], None]

send(on_wakeup=None)
Wakeup the event loop and run the callback afterwards. Multiple calls to this method are coalesced if
they happen before the callback has been called. This means not every call will yield an execution of the
callback. It is safe to call this method form outside the event loop’s thread.

Raises

• uv.UVError – error while trying to wakeup the event loop

• uv.ClosedHandleError – handle has already been closed or is closing

Parameters on_wakeup (Callable[[uv.Async], None]) – callback which should run
in the event loop’s thread after the event loop has been woken up (overrides the current
callback if specified)

1.5 Check – check handle

class uv.Check(loop=None, on_check=None)
Check handles will run the given callback once per loop iteration, right after polling for IO after they have been
started.

on_check
Callback which should run right after polling for IO if the handle has been started.

on_check(check_handle)
Parameters check_handle (uv.Check) – handle the call originates from

Readonly False

Type Callable[[uv.Check], None]

start(on_check=None)
Start the handle. The callback will be called once per loop iteration right after polling for IO from now on.

1.4. Async – async handle 19

Python libuv CFFI Bindings, Release 0.1.0.dev0

Raises

• uv.UVError – error while starting the handle

• uv.ClosedHandleError – handle has already been closed or is closing

Parameters on_check (Callable[[uv.Check], None]) – callback which should run
right after polling for IO (overrides the current callback if specified)

stop()
Stop the handle. The callback will no longer be called.

Raises uv.UVError – error while stopping the handle

1.6 Idle – idle handle

class uv.Idle(loop=None, on_idle=None)
Idle handles will run the given callback once per loop iteration, right before the uv.Prepare handles.

The notable difference with prepare handles is, that when there are active idle handles, the loop will perform a
zero timeout poll instead of blocking for IO.

on_idle
Callback which should run right before the prepare handles.

on_idle(idle)
Parameters idle (uv.Idle) – handle the call originates from

Readonly False

Type Callable[[uv.Idle], None]

start(on_idle=None)
Start the handle. The callback will run once per loop iteration right before the prepare handles from now
on.

Raises

• uv.UVError – error while starting the handle

• uv.HandleClosedError – handle has already been closed or is closing

Parameters on_idle (Callable[[uv.Idle], None]) – callback which should run
right before the prepare handles (overrides the current callback if specified)

stop()
Stop the handle. The callback will no longer be called.

Raises uv.UVError – error while stopping the handle

1.7 Pipe – pipe handle

class uv.Pipe(ipc=False, loop=None, on_read=None, on_connection=None)
Stream interface to local domain sockets on Unix and named pipes on Windows, which supports inter process
communication.

open(fd)
Open an existing file descriptor as a pipe.

20 Chapter 1. Contents:

Python libuv CFFI Bindings, Release 0.1.0.dev0

Raises

• uv.UVError – error while opening the file descriptor

• uv.ClosedHandleError – handle has already been closed or is closing

Parameters fd (int) – file descriptor

bind(path)
Bind the pipe to a file path (Unix) or a name (Windows).

Raises

• uv.UVError – error while binding to path

• uv.ClosedHandleError – handle has already been closed or is closing

Parameters path (unicode) – path or name to bind to to bind to

connect(path, on_connect=None)
Connect to the given Unix domain socket or named pipe.

Raises uv.ClosedHandleError – handle has already been closed or is closing

Parameters

• path (unicode) – path to connect to

• on_connect (Callable[[uv.PipeConnectRequest, uv.StatusCode],
None]:rtype: uv.PipeConnectRequest) – callback which should run after a
connection has been established or on error

pending_count
Number of pending streams to receive over IPC.

Readonly True

Return type int

pending_type
Type of first pending stream, if there is a pending stream. Returns a subclass of uv.Stream.

Readonly True

Return type type | None

pending_accept(*arguments, **keywords)
Accept a pending stream.

Raises

• uv.UVError – error while accepting stream

• uv.ClosedHandleError – handle has already been closed or is closing

Return type uv.Stream

pending_instances(amount)
Set the number of pending pipe instance handles when the pipe server is waiting for connections.

Note: This setting applies to Windows only.

Raises uv.ClosedHandleError – handle has already been closed or is closing

Parameters amount (int) – amount of pending instances

1.7. Pipe – pipe handle 21

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int

Python libuv CFFI Bindings, Release 0.1.0.dev0

sockname
Name of the Unix domain socket or the named pipe.

Raises

• uv.UVError – error while receiving sockname

• uv.ClosedHandleError – handle has already been closed or is closing

Readonly True

Return type unicode

peername
Name of the Unix domain socket or the named pipe to which the handle is connected.

Raises

• uv.UVError – error while receiving peername

• uv.ClosedHandleError – handle has already been closed or is closing

Readonly True

Return type unicode

class uv.PipeConnectRequest(pipe, path, on_connect=None)
Pipe specific connect request.

1.8 Poll – poll handle

class uv.Poll(fd, loop=None, on_event=None)
Poll handles are used to watch file descriptors for readability and writability. The purpose of poll handles is to
enable integrating external libraries that rely on the event loop to signal them about the socket status changes.
Using them for any other purpose is not recommended. Use uv.TCP, uv.UDP, etc. instead, which provide
faster and more scalable implementations, than what can be archived with uv.Poll, especially on Windows.

It is possible that poll handles occasionally signal that a file descriptor is readable or writable even when it is
not. The user should therefore always be prepared to handle EAGAIN or equivalent when it attempts to read
from or write to the fd.

It is not okay to have multiple active poll handles for the same socket, this can cause libuv to busyloop or
otherwise malfunction.

Do not close a file descriptor while it is being polled by an active poll handle. This can cause the handle to
report an error, but it might also start polling another socket. However the fd can be safely closed immediately
after uv.Poll.stop() or uv.Handle.close() has been called.

Note: On Windows only sockets can be polled with uv.Poll handles. On Unix any file descriptor that would
be accepted by poll(2) can be used.

fd
File descriptor the handle polls on.

Readonly True

Type int

on_event
Callback which should be called on IO events.

22 Chapter 1. Contents:

Python libuv CFFI Bindings, Release 0.1.0.dev0

on_event(poll_handle, status, events)
Parameters

• poll_handle (uv.Poll) – handle the call originates from
• status (uv.StatusCode) – may indicate any errors
• events (int) – bitmask of the triggered IO events

Readonly False

Type Callable[[uv.Poll, uv.StatusCode, int], None]

fileno()
Number of the file descriptor polled on.

Return type int

start(events=<PollEvent.READABLE: 1>, on_event=None)
Start polling the file descriptor for the given events. As soon as an event is detected the callback will be
called with status code class:uv.StatusCode.SUCCESS and the triggered events.

If an error happens while polling the callback gets called with status code != 0 which corresponds to a
uv.StatusCode.

Calling this on a handle that is already active is fine. Doing so will update the events mask that is being
polled for.

Raises

• uv.UVError – error while starting the handle

• uv.ClosedHandleError – handle has already been closed or is closing

Parameters

• events (int) – bitmask of events to be polled for

• on_event (Callable[[uv.Poll, uv.StatusCode, int], None]) – call-
back which should be called on IO events (overrides the current callback if specified)

stop()
Stop the handle. The callback will no longer be called.

:raises uv.UVError error while stopping the handle

class uv.PollEvent
Events reported by uv.Poll on IO events.

READABLE = None
File descriptor is readable.

Type uv.PollEvent

WRITABLE = None
File descriptor is writable.

Type uv.PollEvent

1.9 Prepare – poll handle

class uv.Prepare(loop=None, on_prepare=None)
Prepare handles will run the given callback once per loop iteration, right before polling for IO.

1.9. Prepare – poll handle 23

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int

Python libuv CFFI Bindings, Release 0.1.0.dev0

on_prepare
Callback which should run right before polling for IO.

on_prepare(prepare_handle)
Parameters prepare_handle (uv.Prepare) – handle the call originates from

Readonly False

Type Callable[[uv.Prepare], None]

start(on_prepare=None)
Start the handle. The callback will run once per loop iteration right before polling for IO from now on.

Raises

• uv.UVError – error while starting the handle

• uv.ClosedHandleError – handle has already been closed or is closing

Parameters on_prepare (Callable[[uv.Prepare], None]) – callback which
should run right before polling for IO (overrides the current callback if specified)

stop()
Stop the handle. The callback will no longer be called.

Raises uv.UVError – error while stopping the handle

1.10 Process – process handle

class uv.Process(arguments, uid=None, gid=None, cwd=None, env=None, stdin=None, stdout=None,
stderr=None, stdio=None, flags=<ProcessFlags.WINDOWS_HIDE: 16>, loop=None,
on_exit=None)

Process handles will spawn a new process and allow the user to control it and establish communication channels
with it using streams.

stdin = None
Standard input of the child process.

Readonly True

Type int | uv.Stream | file-like | None

stdout = None
Standard output of the child process.

Readonly True

Type int | uv.Stream | file-like | None

stderr = None
Standard error of the child process.

Readonly True

Type int | uv.Stream | file-like | None

stdio = None
Other standard file descriptors of the child process.

Readonly True

Type list[int | uv.Stream | file-like]

24 Chapter 1. Contents:

Python libuv CFFI Bindings, Release 0.1.0.dev0

on_exit = None
Callback which should be called after process exited.

on_exit(process_handle, returncode, signum)
Parameters

• process_handle (uv.Process) – handle the call originates from
• returncode (int) – status code returned by the process on termination
• signum (int) – signal number caused the process to exit

Readonly False

Type Callable[[uv.Process, int, int], None]

pid
PID of the spawned process.

Raises uv.ClosedHandleError – handle has already been closed or is closing

Readonly True

Return type int

kill(signum=<Signals.SIGINT: 2>)
Send the specified signal to the process.

Raises uv.ClosedHandleError – handle has already been closed or is closing

Parameters signum (int) – signal number

class uv.CreatePipe(readable=False, writable=False, ipc=False)
Passed to one of the standard IO arguments of Process, it tells the library to create a new pipe to communicate
with the child process.

uv.PIPE = <CreatePipe readable=True, writable=True, ipc=True>
Create a readable and writable inter process communication pipe.

class uv.ProcessFlags
Process configuration flags enumeration.

DETACHED = None
Spawn the child process in a detached state – this will make it a process group leader, and will effectively
enable the child to keep running after the parent exits. Note that the child process will still keep the parent’s
event loop alive unless the parent process calls uv.Handle.dereference() on the child’s process
handle.

Type uv.ProcessFlags

WINDOWS_HIDE = None
Hide the subprocess console window that would normally be created. This option is only meaningful on
Windows systems. On Unix it is ignored.

Type uv.ProcessFlags

WINDOWS_VERBATIM = None
Do not wrap any arguments in quotes, or perform any other escaping, when converting the argument list
into a command line string. This option is only meaningful on Windows systems. On Unix it is ignored.

Type uv.ProcessFlags

1.10. Process – process handle 25

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int

Python libuv CFFI Bindings, Release 0.1.0.dev0

1.11 Signal – signal handle

class uv.Signal(loop=None, on_signal=None)
Signal handles implement Unix style signal handling on a per-event loop basis. Reception of the generic
uv.Signals is emulated on Windows. Watchers for other signals can be successfully created, but these
signals are never received.

Note: On Linux SIGRT0 and SIGRT1 (signals 32 and 33) are used by the NPTL pthreads library to manage
threads. Installing watchers for those signals will lead to unpredictable behavior and is strongly discouraged.
Future versions of libuv may simply reject them.

on_signal
Callback which should be called on signal delivery.

on_signal(signal_handle, signum):
Parameters

• signal_handle (uv.Signal) – handle the call originates from
• signum (int) – number of the received signal

Readonly False

Type Callable[[uv.Signal, int], None]

signum
Signal currently monitored by this handle.

Raises uv.ClosedHandleError – handle has already been closed or is closing

Readonly True

Return type int

start(signum, on_signal=None)
Start listening for the given signal.

Raises

• uv.UVError – error while starting the handle

• uv.ClosedHandleError – handle has already been closed or is closing

Parameters

• signum (int) – signal number to listen for

• on_signal (Callable[[uv.Signal, int], None]) – callback which should
be called on signal delivery (overrides the current callback if specified)

stop()
Stop listening. The callback will no longer be called.

Raises uv.UVError – error while stopping the handle

class uv.Signals
Standard cross platform signals enumeration.

SIGINT = None
Is normally delivered when the user presses CTRL+C. However it is not generated when terminal is in raw
mode.

Type uv.Signals

26 Chapter 1. Contents:

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int

Python libuv CFFI Bindings, Release 0.1.0.dev0

SIGBREAK = None
Is delivered when the user presses CTRL+BREAK. This signal is only supported on Windows.

Type uv.Signals

SIGHUP = None
Is generated when the user closes the console window. After that the OS might terminate the program after
a few seconds.

Type uv.Signals

SIGWINCH = None
Is generated when the console window has been resized. On Windows libuv emulates SIGWINCH when
the program uses a uv.TTY handle to write to the console. It may not always be delivered in a timely
manner, because libuv will only detect changes when the cursor is being moved. When a readable uv.TTY
handle is used in raw mode, resizing the console buffer will also trigger SIGWINCH.

Type uv.Signals

1.12 Timer – timer handle

class uv.Timer(loop=None, on_timeout=None)
Timer handles are used to schedule callbacks to be called in the future after a given amount of time.

on_timeout
Callback which should run on timeout.

on_timeout(timer_handle)
Parameters timer_handle (uv.Timer) – handle the call originates from

Readonly False

Type Callable[[uv.Timer], None]

repeat
The repeat interval value in milliseconds. The timer will be scheduled to run on the given interval, regard-
less of the callback execution duration, and will follow normal timer semantics in the case of time-slice
overrun.

For example, if a 50ms repeating timer first runs for 17ms, it will be scheduled to run again 33ms later. If
other tasks consume more than the 33ms following the first timer callback, then the callback will run as
soon as possible.

Note: If the repeat value is set from a timer callback it does not immediately take effect. If the timer was
non-repeating before, it will have been stopped. If it was repeating, then the old repeat value will have
been used to schedule the next timeout.

Raises uv.ClosedHandleError – handle has already been closed or is closing

Readonly False

Return type int

again()
Stop the timer, and if it is repeating restart it using the repeat value as the timeout. If the timer has never
been started before it raises uv.error.ArgumentError.

1.12. Timer – timer handle 27

https://docs.python.org/3.5/library/functions.html#int

Python libuv CFFI Bindings, Release 0.1.0.dev0

Raises

• uv.UVError – error while restarting the timer

• uv.ClosedHandleError – handle has already been closed or is closing

start(timeout, repeat=0, on_timeout=None)
Start the timer. If timeout is zero, the callback fires on the next event loop iteration. If repeat is non-zero,
the callback fires first after timeout milliseconds and then repeatedly after repeat milliseconds.

Raises

• uv.UVError – error while starting the handle

• uv.ClosedHandleError – handle has already been closed or is closing

:param timeout timeout to be used (in milliseconds)

Parameters

• repeat (int) – repeat interval to be used (in milliseconds)

• on_timeout (Callable[[uv.Timer], None]) – callback which should run on
timeout (overrides the current callback if specified)

stop()
Stop the handle. The callback will no longer be called.

Raises uv.UVError – error while stopping the handle

1.13 Stream – stream handle

class uv.Stream(loop, ipc, arguments, on_read, on_connection)
Stream handles provide a reliable ordered duplex communication channel. This is the base class of all stream
handles.

Note: This class must not be instantiated directly. Please use the sub-classes for specific communication
channels.

on_read
Callback which should be called when data has been read.

Note: Data might be a zero-bytes long bytes object. In contrast to the Python standard library this does
not indicate any error, especially not EOF.

on_read(stream_handle, status, data)
Parameters

• stream_handle (uv.Stream) – handle the call originates from
• status (uv.StatusCodes) – status of the handle (indicate any errors)
• data (bytes | Any) – data which has been read

Readonly False

Type Callable[[uv.Stream, uv.StatusCodes, bytes], None]

28 Chapter 1. Contents:

https://docs.python.org/3.5/library/functions.html#int

Python libuv CFFI Bindings, Release 0.1.0.dev0

on_connection
Callback which should run after a new connection has been made or on error (if stream is in listen mode).

on_connection(stream_handle, status)
Parameters

• stream_handle (uv.Stream) – handle the call originates from
• status (uv.StatusCodes) – status of the new connection

Readonly False

Type Callable[[uv.Stream, uv.StatusCodes, uv.Stream], None]

ipc
Stream does support inter process communication or not.

Readonly True

Type bool

readable
Stream is readable or not.

Readonly True

Type bool

writable
Stream is writable or not.

Readonly True

Type bool

family
Address family of stream, may be None.

Return type int | None

shutdown(on_shutdown=None)
Shutdown the outgoing (write) side of a duplex stream. It waits for pending write requests to complete.

Parameters on_shutdown (Callable[[uv.ShutdownRequest,
uv.StatusCodes], None]:returns: issued stream shutdown
request) – callback which should run after shutdown has been completed

Return type uv.ShutdownRequest

listen(backlog=5, on_connection=None)
Start listening for incoming connections.

Raises

• uv.UVError – error while start listening for incoming connections

• uv.ClosedHandleError – handle has already been closed or is closing

Parameters

• backlog (int) – number of connections the kernel might queue

• on_connection (Callable[[uv.Stream, uv.StatusCodes], None]) –
callback which should run after a new connection has been made (overrides the current
callback if specified)

1.13. Stream – stream handle 29

https://docs.python.org/3.5/library/functions.html#int

Python libuv CFFI Bindings, Release 0.1.0.dev0

read_start(on_read=None)
Start reading data from the stream. The read callback will be called from now on when data has been read.

Raises

• uv.UVError – error while start reading data from the stream

• uv.ClosedHandleError – handle has already been closed or is closing

Parameters on_read (Callable[[uv.Stream, uv.StatusCodes, bytes],
None]) – callback which should be called when data has been read (overrides the current
callback if specified)

read_stop()
Stop reading data from the stream. The read callback will no longer be called from now on.

Raises uv.UVError – error while stop reading data from the stream

write(buffers, send_stream=None, on_write=None)
Write data to stream. Buffers are written in the given order.

If send_stream is not None and the stream supports inter process communication this method sends
send_stream to the other end of the connection.

Parameters

• buffers (tuple[bytes] | list[bytes] | bytes) – data which should be
written

• send_stream (uv.TCP | uv.Pipe | None) – stream handle which should be
send

• on_write (Callable[[uv.WriteRequest, uv.StatusCodes],
None]:returns: issued write request) – callback which should run
after all data has been written

Return type uv.WriteRequest

try_write(buffers)
Immediately write data to the stream without issuing a write request. Throws
uv.error.TemporaryUnavailableError if data could not be written immediately, other-
wise it returns the number of written bytes.

Raises

• uv.UVError – error while writing data

• uv.ClosedHandleError – handle has already been closed or is closing

• uv.error.TemporaryUnavailableError – unable to write data immediately

Parameters buffers (tuple[bytes] | list[bytes] | bytes) – data which
should be written

Returns number of bytes written

Return type int

accept(cls=None, *arguments, **keywords)
Accept a new stream. This might be a new client connection or a stream sent by inter process communica-
tion.

Warning: There should be no need to use this method directly, it is mainly for internal purposes.

Raises

30 Chapter 1. Contents:

https://docs.python.org/3.5/library/functions.html#int

Python libuv CFFI Bindings, Release 0.1.0.dev0

• uv.UVError – error while accepting incoming stream

• uv.ClosedHandleError – handle has already been closed or is closing

Parameters

• cls (type) – type of the new stream

• arguments (tuple) – arguments passed to the constructor of the new stream

• keywords (dict) – keywords passed to the constructor of the new stream

Returns new stream connection of type cls

Return type uv.Stream

class uv.ConnectRequest(stream, arguments, on_connect=None)
Request to connect to a specific address.

Note: There is a specific connect request type for every stream type.

stream
Stream to establish a connection on.

Readonly True

Type uv.Stream

on_connect
Callback which should run after a connection has been established.

Readonly False

Type Callable[[uv.ConnectRequest, uv.StatusCodes], None]

class uv.WriteRequest(stream, buffers, send_stream=None, on_write=None)
Request to write data to a stream and, on streams with inter process communication support, to send stream
handles. Buffers are written in the given order.

stream
Stream to write data to.

Readonly True

Type uv.Stream

send_stream
Stream handle which should be send.

Readonly True

Type uv.Stream | None

on_write
Callback which should run after all data has been written.

Readonly False

Type Callable[[uv.WriteRequest, uv.StatusCodes], None]

class uv.ShutdownRequest(stream, on_shutdown=None)
Request to shutdown the outgoing side of a duplex stream. It waits for pending write requests to complete.

stream
Stream to shutdown.

1.13. Stream – stream handle 31

https://docs.python.org/3.5/library/functions.html#type
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/stdtypes.html#dict

Python libuv CFFI Bindings, Release 0.1.0.dev0

Readonly True

Type uv.Stream

on_shutdown
Callback which should run after shutdown has been completed.

on_shutdown(shutdown_request, status)
Parameters

• shutdown_request (uv.ShutdownRequest) – request the call originates from
• status (uv.StatusCodes) – status of the shutdown request

Readonly False

Type Callable[[uv.ShutdownRequest, uv.StatusCodes], None]

1.14 TCP – TCP handle

class uv.TCP(flags=0, loop=None, on_read=None, on_connection=None)
Stream interface to TCP sockets for clients and servers.

open(fd)
Open an existing file descriptor as a tcp handle.

Raises

• uv.UVError – error while opening the handle

• uv.ClosedHandleError – handle has already been closed or is closing

Parameters fd (int) – file descriptor

bind(address, flags=0)
Bind the handle to an address. When the port is already taken, you can expect to see an
uv.StatusCode.EADDRINUSE error from either bind(), listen() or connect(). That is, a successful
call to this function does not guarantee that the call to listen() or connect() will succeed as well.

Raises

• uv.UVError – error while binding to address

• uv.ClosedHandleError – handle has already been closed or is closing

Parameters

• address (uv.Address4 | uv.Address6 | tuple) – address to bind to (ip,
port, flowinfo=0, scope_id=0)

• flags (int) – bind flags to be used (mask of uv.TCPFlags)

connect(address, on_connect=None)
Establish an IPv4 or IPv6 TCP connection.

Raises

• uv.UVError – error while connecting to address

• uv.ClosedHandleError – handle has already been closed or is closing

Parameters

• address (uv.Address4 | uv.Address6 | tuple) – address to connect to

32 Chapter 1. Contents:

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int

Python libuv CFFI Bindings, Release 0.1.0.dev0

• on_connect (Callable[[uv.TCPConnectRequest, uv.StatusCode],
None]:rtype: uv.TCPConnectRequest) – callback which should run after a
connection has been established or on error

sockname
The current address to which the handle is bound to.

Raises

• uv.UVError – error while receiving sockname

• uv.ClosedHandleError – handle has already been closed or is closing

Readonly True

Return type uv.Address4 | uv.Address6

peername
The address of the peer connected to the handle.

Raises

• uv.UVError – error while receiving peername

• uv.ClosedHandleError – handle has already been closed or is closing

Readonly True

Return type uv.Address4 | uv.Address6

set_nodelay(enable)
Enable / disable Nagle’s algorithm.

Raises

• uv.UVError – error enabling / disabling the algorithm

• uv.ClosedHandleError – handle has already been closed or is closing

Parameters enable (bool) – enable / disable

set_keepalive(enable, delay=0)
Enable / disable TCP keep-alive.

Raises

• uv.UVError – error enabling / disabling tcp keep-alive

• uv.ClosedHandleError – handle has already been closed or is closing

Parameters

• enable (bool) – enable / disable

• delay (int) – initial delay in seconds

set_simultaneous_accepts(enable)
Enable / disable simultaneous asynchronous accept requests that are queued by the operating system when
listening for new TCP connections.

This setting is used to tune a TCP server for the desired performance. Having simultaneous accepts can
significantly improve the rate of accepting connections (which is why it is enabled by default) but may
lead to uneven load distribution in multi-process setups.

Raises

• uv.UVError – error enabling / disabling simultaneous accepts

1.14. TCP – TCP handle 33

https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#int

Python libuv CFFI Bindings, Release 0.1.0.dev0

• uv.ClosedHandleError – handle has already been closed or is closing

Parameters enable (bool) – enable / disable

class uv.TCPFlags
TCP configuration enumeration.

IPV6ONLY = None
Disable dual stack support.

Type uv.TCPFlags

1.15 TTY – TTY handle

class uv.TTY(fd, readable=False, loop=None, on_read=None)
Stream interface to the local user terminal console. It allows using ANSI escape codes across platforms.

Raises uv.UVError – error while initializing the handle

Parameters

• fd (int) – file descriptor of the console

• readable (bool) – specifies whether the file descriptor is readable or not

• loop (uv.Loop) – event loop the handle should run on

• on_read (Callable[[uv.TTY, uv.StatusCodes, bytes], None]) – call-
back which should be called when data has been read

console_size
Current size of the console.

Raises uv.UVError – error while getting console size

Return type ConsoleSize

set_mode(mode=<uv.helpers.mock.Mock object>)
Set the the specified terminal mode.

Raises

• uv.UVError – error while setting mode

• uv.ClosedHandleError – handle has already been closed or is closing

Parameters mode (uv.TTYMode) – mode to set

class uv.TTYMode
Terminal modes enumeration.

NORMAL
Initial normal terminal mode.

Type uv.TTYMode

RAW
Raw input mode (on windows, ENABLE_WINDOW_INPUT is also enabled).

Type uv.TTYMode

IO
Binary-safe IO mode for IPC (Unix only).

Type uv.TTYMode

34 Chapter 1. Contents:

https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool

Python libuv CFFI Bindings, Release 0.1.0.dev0

class uv.ConsoleSize

width
Width of the console.

Readonly True

Type int

height
Height of the console.

Readonly True

Type int

1.16 UDP – UDP handle

class uv.UDP(flags=0, loop=None, on_receive=None)
Abstraction of UDP sockets for servers and clients.

on_receive
Callback called after package has been received.

on_receive(udp_handle, status, addr, data, flags)
Parameters

• udp_handle (uv.UDP) – handle the call originates from
• status (uv.StatusCode) – status of the handle (indicate any errors)
• addr (uv.Address4 | uv.Address6 | tuple) – address the data originates

from
• data – data which has been received
• flags (int) – udp status flags (e.g. partial read)

Readonly False

Type Callable[[uv.UDP, uv.StatusCode, uv.Address, bytes, int], None]

open(fd)
Open an existing file descriptor as an udp handle.

Raises

• uv.UVError – error while opening the handle

• uv.ClosedHandleError – handle has already been closed or is closing

Parameters fd (int) – file descriptor

bind(address, flags=0)
Bind the socket to the specified address.

Raises

• uv.UVError – error while binding to address

• uv.ClosedHandleError – handle has already been closed or is closing

Parameters address – address to bind to (ip, port, flowinfo=0, scope_id=0)

:param flags bind flags to be used (mask of uv.UDPFlags)

1.16. UDP – UDP handle 35

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int

Python libuv CFFI Bindings, Release 0.1.0.dev0

send(buffers, address, on_send=None)
Send data over the UDP socket. If the socket has not previously been bound with bind() it will be bound
to 0.0.0.0 (the “all interfaces” IPv4 address) and a random port number.

Raises

• uv.UVError – error while initializing the request

• uv.ClosedHandleError – udp handle has already been closed or is closing

Parameters

• buffers (tuple[bytes] | list[bytes] | bytes) – data which should be
send

• address (tuple | uv.Address4 | uv.Address6) – address tuple (ip, port,
flowinfo=0, scope_id=0)

• on_send (Callable[[uv.UDPSendRequest, uv.StatusCode],
None]:rtype: uv.UDPSendRequest) – callback called after all data has
been sent

try_send(buffers, address)
Same as send(), but won’t queue a write request if it cannot be completed immediately.

Raises

• uv.UVError – error while sending data

• uv.ClosedHandleError – handle has already been closed or is closing

Parameters

• buffers (tuple[bytes] | list[bytes] | bytes) – data which should be
send

• address (tuple | uv.Address4 | uv.Address6) – address tuple (ip, port,
flowinfo=0, scope_id=0)

Returns number of bytes sent

Return type int

receive_start(on_receive=None)
Prepare for receiving data. If the socket has not previously been bound with bind() it is bound to 0.0.0.0
(the “all interfaces” IPv4 address) and a random port number.

Raises

• uv.UVError – error while start receiving datagrams

• uv.ClosedHandleError – handle has already been closed or is closing

Parameters on_receive (Callable[[uv.UDP, uv.StatusCode, uv.Address,
bytes, int], None]) – callback called after package has been received

receive_stop()
Stop listening for incoming datagrams.

Raises uv.UVError – error while stop listening for incoming datagrams

set_membership(multicast_address, membership, interface_address=None)
Set membership for a multicast address

36 Chapter 1. Contents:

https://docs.python.org/3.5/library/functions.html#int

Python libuv CFFI Bindings, Release 0.1.0.dev0

raises uv.UVError: error while setting membership

Raises uv.ClosedHandleError – handle has already been closed or is closing

Parameters

• multicast_address (unicode) – multicast address to set membership for

• membership (uv.UDPMembership) – membership operation

• interface_address (unicode) – interface address

set_multicast_loop(enable)
Set IP multicast loop flag. Makes multicast packets loop bac to local sockets.

Raises

• uv.UVError – error enabling / disabling multicast loop

• uv.ClosedHandleError – handle has already been closed or is closing

Parameters enable (bool) – enable / disable multicast loop

set_multicast_ttl(ttl)
Set the multicast ttl.

Raises uv.UVError – error while setting ttl

:raises uv.ClosedHandleError handle has already been closed or is closing

Parameters ttl (int) – multicast ttl (between 1 and 255)

set_multicast_interface(interface)
Set the multicast interface to send or receive data on.

Raises

• uv.UVError – error while setting multicast interface

• uv.ClosedHandleError – handle has already been closed or is closing

Parameters interface (unicode) – multicast interface address

set_broadcast(enable)
Set broadcast on or off.

Raises

• uv.UVError – error enabling / disabling broadcast

• uv.ClosedHandleError – handle has already been closed or is closing

Parameters enable (bool) – enable / disable broadcast

family
Address family of UDP handle, may be None.

Readonly True

Return type int | None

sockname
The local IP and port of the UDP handle.

Raises uv.UVError – error while receiving sockname

1.16. UDP – UDP handle 37

https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool

Python libuv CFFI Bindings, Release 0.1.0.dev0

Readonly True

Return type uv.Address4 | uv.Address6

class uv.UDPFlags
UDP configuration and status flags enumeration.

IPV6ONLY = None
Disable dual stack support.

Type uv.UDPFlags

REUSEADDR = None
Enable SO_REUSEADDR when binding the handle. This sets the SO_REUSEPORT socket flag on the
BSDs and OSX. On other Unix platforms, it sets the SO_REUSEADDR flag. This allows multiple threads
or processes to bind to the same address without errors (provided that they all set the flag) but only the last
one will receive any traffic, in effect “stealing” the port from the previous listener.

Type uv.UDPFlags

PARTIAL = None
Indicates that the received message has been truncated because the read buffer was too small. The remain-
der was discarded by the OS.

Type uv.UDPFlags

class uv.UDPMembership
Membership types enumeration for multicast addresses.

LEAVE_GROUP = None
Leave multicast group.

Type uv.UDPMembership

JOIN_GROUP = None
Join multicast group.

Type uv.UDPMembership

1.17 FSEvent – fs event handle

class uv.FSEvent(path=None, flags=0, loop=None, on_event=None)
FS event handles monitor a given filesystem path for changes including renaming und deletion after they have
been started. This handle uses the best backend available for this job on each platform.

path
Directory or filename to monitor.

Warning: This property is writable, however you need to restart the handle if you change it during
the handle is active.

Readonly False

Type unicode

flags
Flags to be used for monitoring.

Warning: This property is writable, however you need to restart the handle if you change it during
the handle is active.

38 Chapter 1. Contents:

Python libuv CFFI Bindings, Release 0.1.0.dev0

Readonly False

Type int

on_event
Callback which should be called on filesystem events.

on_event(fs_event, status, filename, events)
Parameters

• fs_event (uv.FSEvent) – handle the call originates from
• status (uv.StatusCode) – may indicate any errors
• filename (unicode) – if the handle has been started with a directory this will be a

relative path to a file contained in that directory which triggered the events
• events (int) – bitmask of the triggered events

Readonly False

Type Callable[[uv.FSEvent, uv.StatusCode, unicode, int], None]

start(path=None, flags=None, on_event=None)
Start watching for filesystem events.

Raises

• uv.UVError – error while starting the handle

• uv.ClosedHandleError – handle has already been closed or is closing

Parameters

• path (unicode) – directory or filename to monitor (overrides the current path if speci-
fied)

• flags (int) – flags to be used for monitoring (overrides the current flags if specified)

• on_event (Callable[[uv.FSEvent, uv.StatusCode, unicode,
int], None]) – callback which should be called on filesystem events (overrides
the current callback if specified)

stop()
Stop the handle. The callback will no longer be called.

Raises uv.UVError – error while stopping the handle

class uv.FSEvents
Events reported by uv.FSEvent on filesystem changes.

RENAME = None
File has been renamed or deleted. If the file has been deleted it is necessary (at least on Linux) to restart
the corresponding watcher even if the file has been directly recreated.

Type uv.FSEvents

CHANGE = None
File has been changed.

Type uv.FSEvents

class uv.FSEventFlags
Flags to configure the behavior of uv.FSEvent.

WATCH_ENTRY = None
By default, if the fs event watcher is given a directory name, it will watch for all events in that directory.

1.17. FSEvent – fs event handle 39

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int

Python libuv CFFI Bindings, Release 0.1.0.dev0

This flag overrides this behavior and makes uv.FSEvent report only changes to the directory entry itself.
This flag does not affect individual files watched.

Note: This flag is currently not implemented yet on any backend.

Type uv.FSEventFlags

STAT = None
By default uv.FSEvent will try to use a kernel interface such as inotify or kqueue to detect events. This
may not work on remote filesystems such as NFS mounts. This flag makes uv.FSEvent fall back to
calling stat() on a regular interval.

Note: This flag is currently not implemented yet on any backend.

Type uv.FSEventFlags

RECURSIVE = None
By default, if the fs event watcher is given a directory name, it will not watch for events in its subdirectories.
This flag overrides this behavior and makes uv.FSEvent report also changes in subdirectories.

Note: Currently the only supported platforms are OSX and Windows.

Type uv.FSEventFlags

1.18 FSPoll – fs poll handle

class uv.FSPoll(path=None, interval=5000, loop=None, on_change=None)
FS poll handles monitor a given filesystem path for changes. Unlike fs event handles, fs poll handles use stat()
to detect when a file or directory has been changed so they can work on file systems where fs event handles can
not.

Note: For maximum portability, use multi-second intervals. Sub-second intervals will not detect all changes
on many file systems.

path
Directory or filename to monitor.

Warning: This property is writable, however you need to restart the handle if you change it during
the handle is active.

Readonly False

Type unicode

interval
Interval to be used for monitoring (in milliseconds).

40 Chapter 1. Contents:

Python libuv CFFI Bindings, Release 0.1.0.dev0

Warning: This property is writable, however you need to restart the handle if you change it during
the handle is active.

Readonly False

Type int

on_change
Callback which should be called on filesystem changes.

on_change(fs_poll, status, previous_stat, current_stat)
Parameters

• fs_event (uv.FSEvent) – handle the call originates from
• status (uv.StatusCode) – may indicate any errors
• previous_stat (uv.Stat) – previous filesystem path’s stat
• current_stat (uv.Stat) – current filesystem path’s stat

Readonly False

Type Callable[[uv.FSPoll, uv.StatusCode, uv.Stat, uv.Stat], None]

start(path=None, interval=None, on_change=None)
Start monitoring for filesystem changes. The change callback is invoked with status code < 0 if the given
path does not exist or is inaccessible. The watcher is not stopped but your callback is not called again until
something changes (e.g. when the file is created or the error reason changes).

Raises

• uv.UVError – error while starting the handle

• uv.ClosedHandleError – handle has already been closed or is closing

Parameters

• path (unicode) – directory or filename to monitor (overrides the current path if speci-
fied)

• interval (int) – interval to be used for monitoring (in milliseconds and overrides the
current interval if specified)

• on_change (Callable[[uv.FSPoll, uv.StatusCode, uv.Stat,
uv.Stat], None]) – callback which should be called on filesystem changes

stop()
Stop the handle. The callback will no longer be called.

Raises uv.UVError – error while stopping the handle

1.18. FSPoll – fs poll handle 41

https://docs.python.org/3.5/library/functions.html#int

Python libuv CFFI Bindings, Release 0.1.0.dev0

42 Chapter 1. Contents:

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

43

Python libuv CFFI Bindings, Release 0.1.0.dev0

44 Chapter 2. Indices and tables

Python Module Index

u
uv.error, 1

45

Python libuv CFFI Bindings, Release 0.1.0.dev0

46 Python Module Index

Index

A
accept() (uv.Stream method), 30
active (uv.Handle attribute), 16
AddressDataError, 10
AddressError, 9
AddressFamilyError, 9
AddressFlagsError, 9
AddressHintsError, 9
AddressInUseError, 9
AddressNameError, 10
AddressProtocolError, 10
AddressServiceError, 10
AddressSocketTypeError, 10
AddressUnavailableError, 9
again() (uv.Timer method), 27
alive (uv.Loop attribute), 12
allocate() (uv.loop.Allocator method), 15
Allocator (class in uv.loop), 15
allocator (uv.Handle attribute), 16
ArgumentError, 7
Async (class in uv), 19
Async.on_wakeup() (in module uv), 19

B
BadFileDescriptorError, 8
bind() (uv.Pipe method), 21
bind() (uv.TCP method), 32
bind() (uv.UDP method), 35
BrokenPipeError, 10
BufferSpaceError, 8

C
call_later() (uv.Loop method), 13
CanceledError, 7
CHANGE (uv.FSEvents attribute), 39
CharsetError, 8
Check (class in uv), 19
Check.on_check() (in module uv), 19
clear_pending() (uv.Handle method), 18
close() (uv.Handle method), 18

close() (uv.Loop method), 13
close_all_handles() (uv.Loop method), 13
closed (uv.Handle attribute), 16
closed (uv.Loop attribute), 12
ClosedHandleError, 9
ClosedLoopError, 9
ClosedStructureError, 9
closing (uv.Handle attribute), 16
code (uv.error.UVError attribute), 7
connect() (uv.Pipe method), 21
connect() (uv.TCP method), 32
ConnectionAbortedError, 10
ConnectionError, 10
ConnectionInProgressError, 10
ConnectionRefusedError, 10
ConnectionResetError, 10
ConnectRequest (class in uv), 31
console_size (uv.TTY attribute), 34
ConsoleSize (class in uv), 34
CreatePipe (class in uv), 25
CrossDeviceError, 9

D
data (uv.Handle attribute), 16
DEFAULT (uv.RunModes attribute), 14
DefaultAllocator (class in uv.loop), 15
dereference() (uv.Handle method), 18
DestinationAddressError, 10
DETACHED (uv.ProcessFlags attribute), 25
DeviceNotFoundError, 10

E
E2BIG (uv.error.StatusCodes attribute), 1
EACCES (uv.error.StatusCodes attribute), 1
EADDRINUSE (uv.error.StatusCodes attribute), 1
EADDRNOTAVAIL (uv.error.StatusCodes attribute), 1
EAFNOSUPPORT (uv.error.StatusCodes attribute), 1
EAGAIN (uv.error.StatusCodes attribute), 1
EAI_ADDRFAMILY (uv.error.StatusCodes attribute), 1
EAI_AGAIN (uv.error.StatusCodes attribute), 1
EAI_BADFLAGS (uv.error.StatusCodes attribute), 2

47

Python libuv CFFI Bindings, Release 0.1.0.dev0

EAI_BADHINTS (uv.error.StatusCodes attribute), 2
EAI_CANCELED (uv.error.StatusCodes attribute), 2
EAI_FAIL (uv.error.StatusCodes attribute), 2
EAI_FAMILY (uv.error.StatusCodes attribute), 2
EAI_MEMORY (uv.error.StatusCodes attribute), 2
EAI_NODATA (uv.error.StatusCodes attribute), 2
EAI_NONAME (uv.error.StatusCodes attribute), 2
EAI_OVERFLOW (uv.error.StatusCodes attribute), 2
EAI_PROTOCOL (uv.error.StatusCodes attribute), 2
EAI_SERVICE (uv.error.StatusCodes attribute), 2
EAI_SOCKTYPE (uv.error.StatusCodes attribute), 2
EALREADY (uv.error.StatusCodes attribute), 2
EBADF (uv.error.StatusCodes attribute), 3
EBUSY (uv.error.StatusCodes attribute), 3
ECANCELED (uv.error.StatusCodes attribute), 3
ECHARSET (uv.error.StatusCodes attribute), 3
ECONNABORTED (uv.error.StatusCodes attribute), 3
ECONNREFUSED (uv.error.StatusCodes attribute), 3
ECONNRESET (uv.error.StatusCodes attribute), 3
EDESTADDRREQ (uv.error.StatusCodes attribute), 3
EEXIST (uv.error.StatusCodes attribute), 3
EFAULT (uv.error.StatusCodes attribute), 3
EFBIG (uv.error.StatusCodes attribute), 3
EHOSTDOWN (uv.error.StatusCodes attribute), 7
EHOSTUNREACH (uv.error.StatusCodes attribute), 3
EINTR (uv.error.StatusCodes attribute), 3
EINVAL (uv.error.StatusCodes attribute), 3
EIO (uv.error.StatusCodes attribute), 4
EISCONN (uv.error.StatusCodes attribute), 4
EISDIR (uv.error.StatusCodes attribute), 4
ELOOP (uv.error.StatusCodes attribute), 4
EMFILE (uv.error.StatusCodes attribute), 4
EMLINK (uv.error.StatusCodes attribute), 6
EMSGSIZE (uv.error.StatusCodes attribute), 4
ENAMETOOLONG (uv.error.StatusCodes attribute), 4
ENETDOWN (uv.error.StatusCodes attribute), 4
ENETUNREACH (uv.error.StatusCodes attribute), 4
ENFILE (uv.error.StatusCodes attribute), 4
ENOBUFS (uv.error.StatusCodes attribute), 4
ENODEV (uv.error.StatusCodes attribute), 4
ENOENT (uv.error.StatusCodes attribute), 4
ENOMEM (uv.error.StatusCodes attribute), 5
ENONET (uv.error.StatusCodes attribute), 5
ENOPROTOOPT (uv.error.StatusCodes attribute), 5
ENOSPC (uv.error.StatusCodes attribute), 5
ENOSYS (uv.error.StatusCodes attribute), 5
ENOTCONN (uv.error.StatusCodes attribute), 5
ENOTDIR (uv.error.StatusCodes attribute), 5
ENOTEMPTY (uv.error.StatusCodes attribute), 5
ENOTSOCK (uv.error.StatusCodes attribute), 5
ENOTSUP (uv.error.StatusCodes attribute), 5
ENXIO (uv.error.StatusCodes attribute), 6
EOF (uv.error.StatusCodes attribute), 6
EOFError, 9

EPERM (uv.error.StatusCodes attribute), 5
EPIPE (uv.error.StatusCodes attribute), 5
EPROTO (uv.error.StatusCodes attribute), 5
EPROTONOSUPPORT (uv.error.StatusCodes attribute),

5
EPROTOTYPE (uv.error.StatusCodes attribute), 6
ERANGE (uv.error.StatusCodes attribute), 6
EROFS (uv.error.StatusCodes attribute), 6
ESHUTDOWN (uv.error.StatusCodes attribute), 6
ESPIPE (uv.error.StatusCodes attribute), 6
ESRCH (uv.error.StatusCodes attribute), 6
ETIMEDOUT (uv.error.StatusCodes attribute), 6
ETXTBSY (uv.error.StatusCodes attribute), 6
exc_traceback (uv.Loop attribute), 12
exc_type (uv.Loop attribute), 12
exc_value (uv.Loop attribute), 12
excepthook (uv.Loop attribute), 11
exception (uv.error.StatusCodes attribute), 7
EXDEV (uv.error.StatusCodes attribute), 6

F
family (uv.Stream attribute), 29
family (uv.UDP attribute), 37
fd (uv.Poll attribute), 22
FileExistsError, 8
fileno() (uv.Handle method), 17
fileno() (uv.Loop method), 12
fileno() (uv.Poll method), 23
FileNotFoundError, 10
FileTableOverflowError, 11
FileTooLargeError, 8
finalize() (uv.loop.Allocator method), 15
flags (uv.FSEvent attribute), 38
FSEvent (class in uv), 38
FSEvent.on_event() (in module uv), 39
FSEventFlags (class in uv), 39
FSEvents (class in uv), 39
FSPoll (class in uv), 40
FSPoll.on_change() (in module uv), 41

G
get() (uv.error.StatusCodes class method), 7
get_current() (uv.Loop class method), 11
get_default() (uv.Loop class method), 11
get_timeout() (uv.Loop method), 13

H
Handle (class in uv), 15
Handle.on_closed() (in module uv), 16
handle_exception() (uv.Loop method), 14
handles (uv.Loop attribute), 12
height (uv.ConsoleSize attribute), 35
HostUnreachableError, 8

48 Index

Python libuv CFFI Bindings, Release 0.1.0.dev0

I
Idle (class in uv), 20
Idle.on_idle() (in module uv), 20
InterruptedError, 8
interval (uv.FSPoll attribute), 40
IO (uv.TTYMode attribute), 34
IOError, 8
ipc (uv.Stream attribute), 29
IPV6ONLY (uv.TCPFlags attribute), 34
IPV6ONLY (uv.UDPFlags attribute), 38
IsADirectoryError, 8
IsConnectedError, 8

J
JOIN_GROUP (uv.UDPMembership attribute), 38

K
kill() (uv.Process method), 25

L
LEAVE_GROUP (uv.UDPMembership attribute), 38
listen() (uv.Stream method), 29
Loop (class in uv), 11
loop (uv.Handle attribute), 16
Loop.excepthook() (in module uv), 11

M
make_current() (uv.Loop method), 12
MassageTooLongError, 8
MemoryError, 10
message (uv.error.StatusCodes attribute), 7
message (uv.error.UVError attribute), 7

N
name (uv.error.StatusCodes attribute), 7
name (uv.error.UVError attribute), 7
NameTooLongError, 8
NetworkDownError, 10
NetworkError, 10
NetworkUnreachableError, 10
NoNetworkError, 10
NORMAL (uv.TTYMode attribute), 34
NoSpaceError, 8
NotADirectoryError, 8
NotConnectedError, 8
NotEmptyError, 8
NotFoundError, 10
NotImplementedError, 8
NotSocketError, 9
NotSupportedError, 9
now (uv.Loop attribute), 12
NOWAIT (uv.RunModes attribute), 15

O
on_change (uv.FSPoll attribute), 41
on_check (uv.Check attribute), 19
on_closed (uv.Handle attribute), 16
on_connect (uv.ConnectRequest attribute), 31
on_connection (uv.Stream attribute), 28
on_event (uv.FSEvent attribute), 39
on_event (uv.Poll attribute), 22
on_exit (uv.Process attribute), 24
on_idle (uv.Idle attribute), 20
on_prepare (uv.Prepare attribute), 23
on_read (uv.Stream attribute), 28
on_receive (uv.UDP attribute), 35
on_shutdown (uv.ShutdownRequest attribute), 32
on_signal (uv.Signal attribute), 26
on_timeout (uv.Timer attribute), 27
on_wakeup (uv.Async attribute), 19
on_wakeup() (uv.Loop method), 14
on_write (uv.WriteRequest attribute), 31
ONCE (uv.RunModes attribute), 14
open() (uv.Pipe method), 20
open() (uv.TCP method), 32
open() (uv.UDP method), 35

P
PARTIAL (uv.UDPFlags attribute), 38
path (uv.FSEvent attribute), 38
path (uv.FSPoll attribute), 40
peername (uv.Pipe attribute), 22
peername (uv.TCP attribute), 33
pending_accept() (uv.Pipe method), 21
pending_count (uv.Pipe attribute), 21
pending_instances() (uv.Pipe method), 21
pending_type (uv.Pipe attribute), 21
PermanentError, 8
PermissionError, 8
pid (uv.Process attribute), 25
Pipe (class in uv), 20
PIPE (in module uv), 25
PipeConnectRequest (class in uv), 22
Poll (class in uv), 22
Poll.on_event() (in module uv), 22
PollEvent (class in uv), 23
Prepare (class in uv), 23
Prepare.on_prepare() (in module uv), 24
Process (class in uv), 24
Process.on_exit() (in module uv), 25
ProcessFlags (class in uv), 25
ProcessLookupError, 9
ProtocolError, 9
ProtocolNoOptionError, 9
ProtocolNotSupportedError, 9
ProtocolTypeError, 9

Index 49

Python libuv CFFI Bindings, Release 0.1.0.dev0

R
RAW (uv.TTYMode attribute), 34
read_start() (uv.Stream method), 29
read_stop() (uv.Stream method), 30
READABLE (uv.PollEvent attribute), 23
readable (uv.Stream attribute), 29
receive_buffer_size (uv.Handle attribute), 17
receive_start() (uv.UDP method), 36
receive_stop() (uv.UDP method), 36
RECURSIVE (uv.FSEventFlags attribute), 40
reference() (uv.Handle method), 18
referenced (uv.Handle attribute), 17
RENAME (uv.FSEvents attribute), 39
repeat (uv.Timer attribute), 27
ResourceBusyError, 8
ResultTooLargeError, 8
REUSEADDR (uv.UDPFlags attribute), 38
run() (uv.Loop method), 13
RunModes (class in uv), 14

S
SeekError, 9
send() (uv.Async method), 19
send() (uv.UDP method), 36
send_buffer_size (uv.Handle attribute), 17
send_stream (uv.WriteRequest attribute), 31
set_broadcast() (uv.UDP method), 37
set_keepalive() (uv.TCP method), 33
set_membership() (uv.UDP method), 36
set_mode() (uv.TTY method), 34
set_multicast_interface() (uv.UDP method), 37
set_multicast_loop() (uv.UDP method), 37
set_multicast_ttl() (uv.UDP method), 37
set_nodelay() (uv.TCP method), 33
set_pending() (uv.Handle method), 18
set_simultaneous_accepts() (uv.TCP method), 33
shutdown() (uv.Stream method), 29
ShutdownRequest (class in uv), 31
ShutdownRequest.on_shutdown() (in module uv), 32
SIGBREAK (uv.Signals attribute), 26
SIGHUP (uv.Signals attribute), 27
SIGINT (uv.Signals attribute), 26
Signal (class in uv), 26
Signals (class in uv), 26
signum (uv.Signal attribute), 26
SIGWINCH (uv.Signals attribute), 27
sockname (uv.Pipe attribute), 21
sockname (uv.TCP attribute), 33
sockname (uv.UDP attribute), 37
start() (uv.Check method), 19
start() (uv.FSEvent method), 39
start() (uv.FSPoll method), 41
start() (uv.Idle method), 20
start() (uv.Poll method), 23

start() (uv.Prepare method), 24
start() (uv.Signal method), 26
start() (uv.Timer method), 28
STAT (uv.FSEventFlags attribute), 40
StatusCodes (class in uv.error), 1
stderr (uv.Process attribute), 24
stdin (uv.Process attribute), 24
stdio (uv.Process attribute), 24
stdout (uv.Process attribute), 24
stop() (uv.Check method), 20
stop() (uv.FSEvent method), 39
stop() (uv.FSPoll method), 41
stop() (uv.Idle method), 20
stop() (uv.Loop method), 13
stop() (uv.Poll method), 23
stop() (uv.Prepare method), 24
stop() (uv.Signal method), 26
stop() (uv.Timer method), 28
Stream (class in uv), 28
stream (uv.ConnectRequest attribute), 31
stream (uv.ShutdownRequest attribute), 31
stream (uv.WriteRequest attribute), 31
Stream.on_connection() (in module uv), 29
Stream.on_read() (in module uv), 28
structure_clear_pending() (uv.Loop method), 14
structure_is_pending() (uv.Loop method), 14
structure_set_pending() (uv.Loop method), 14
SUCCESS (uv.error.StatusCodes attribute), 1
SystemFailureError, 10

T
TCP (class in uv), 32
TCPFlags (class in uv), 34
TemporaryUnavailableError, 7
TimeoutError, 9
Timer (class in uv), 27
Timer.on_timeout() (in module uv), 27
TooManyLinksError, 11
TooManyOpenFilesError, 11
TooManySymbolicLinksError, 11
try_send() (uv.UDP method), 36
try_write() (uv.Stream method), 30
TTY (class in uv), 34
TTYMode (class in uv), 34

U
UDP (class in uv), 35
UDP.on_receive() (in module uv), 35
UDPFlags (class in uv), 38
UDPMembership (class in uv), 38
UNKNOWN (uv.error.StatusCodes attribute), 6
UnsupportedOperation, 9
update_time() (uv.Loop method), 13
uv.error (module), 1

50 Index

Python libuv CFFI Bindings, Release 0.1.0.dev0

UVError, 7

W
WATCH_ENTRY (uv.FSEventFlags attribute), 39
width (uv.ConsoleSize attribute), 35
WINDOWS_HIDE (uv.ProcessFlags attribute), 25
WINDOWS_VERBATIM (uv.ProcessFlags attribute), 25
WRITABLE (uv.PollEvent attribute), 23
writable (uv.Stream attribute), 29
write() (uv.Stream method), 30
WriteRequest (class in uv), 31

Index 51

	Contents:
	Errors – exceptions and error handling
	Loop – event loop
	Handle – handle base class
	Async – async handle
	Check – check handle
	Idle – idle handle
	Pipe – pipe handle
	Poll – poll handle
	Prepare – poll handle
	Process – process handle
	Signal – signal handle
	Timer – timer handle
	Stream – stream handle
	TCP – TCP handle
	TTY – TTY handle
	UDP – UDP handle
	FSEvent – fs event handle
	FSPoll – fs poll handle

	Indices and tables
	Python Module Index

